【題目】如圖,拋物線(xiàn)yax2+bx+c的對(duì)稱(chēng)軸為x=﹣1,且過(guò)點(diǎn)(,0),有下列結(jié)論:①abc0; a2b+4c0;③25a10b+4c0;④3b+2c0;其中所有正確的結(jié)論是( 。

A.①③B.①③④C.①②③D.①②③④

【答案】C

【解析】

①根據(jù)拋物線(xiàn)的開(kāi)口方向、對(duì)稱(chēng)軸、與y軸的交點(diǎn)即可得結(jié)論;

②根據(jù)拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo)即可得結(jié)論;

③根據(jù)對(duì)稱(chēng)軸和與x軸的交點(diǎn)得另一個(gè)交點(diǎn)坐標(biāo),把另一個(gè)交點(diǎn)坐標(biāo)代入拋物線(xiàn)解析式即可得結(jié)論;

④根據(jù)點(diǎn)(,0)和對(duì)稱(chēng)軸方程即可得結(jié)論.

解:①觀(guān)察圖象可知:

a0b0,c0,∴abc0,

所以①正確;

②當(dāng)x時(shí),y0

a+b+c0,

a+2b+4c0,

a+4c=﹣2b,

a2b+4c=﹣4b0,

所以②正確;

③因?yàn)閷?duì)稱(chēng)軸x=﹣1,拋物線(xiàn)與x軸的交點(diǎn)(0),

所以與x軸的另一個(gè)交點(diǎn)為(﹣,0),

當(dāng)x=﹣時(shí),ab+c0,

25a10b+4c0

所以③正確;

④當(dāng)x時(shí),a+2b+4c0,

又對(duì)稱(chēng)軸:﹣=﹣1

b2aab,

b+2b+4c0,

b=﹣c

3b+2c=﹣c+2c=﹣c0,

3b+2c0

所以④錯(cuò)誤.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),ABBC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°,cos37°,tan37°.計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB60°OC是∠AOB的平分線(xiàn),點(diǎn)DOC上一點(diǎn),過(guò)D作直線(xiàn)DEOA,垂足為點(diǎn)E,且直線(xiàn)DEOB于點(diǎn)F,如圖所示.若DE2,則DF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于反比例函數(shù)y=﹣,下列說(shuō)法正確的是( 。

A.圖象在第一、三象限B.圖象經(jīng)過(guò)點(diǎn)(2,﹣8)

C.當(dāng)x>0時(shí),yx的增大而減小D.當(dāng)x<0時(shí),yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)內(nèi)從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時(shí)間,然后繼續(xù)按原速前往乙地,景區(qū)從甲地開(kāi)往乙地的電瓶車(chē)每隔半小時(shí)發(fā)一趟車(chē),速度是,若小華與第1趟電瓶車(chē)同時(shí)出發(fā),設(shè)小華距乙地的路程為,第趟電瓶車(chē)距乙地的路程為,為正整數(shù),行進(jìn)時(shí)間為.如圖畫(huà)出了,的函數(shù)圖象.

1)觀(guān)察圖,其中 , ;

2)求第2趟電瓶車(chē)距乙地的路程的函數(shù)關(guān)系式;

3)當(dāng)時(shí),在圖中畫(huà)出的函數(shù)圖象;并觀(guān)察圖象,得出小華在休息后前往乙地的途中,共有 趟電瓶車(chē)駛過(guò).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究問(wèn)題:

方法感悟:

如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿(mǎn)足∠EAF=45°,連接EF,求證DE+BF=EF.

感悟解題方法,并完成下列填空:

△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)ABAD重合,由旋轉(zhuǎn)可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,點(diǎn)G,B,F(xiàn)在同一條直線(xiàn)上.

∵∠EAF=45°

∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,

∴∠1+∠3=45°.

∠GAF=∠_________.

AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

方法遷移:

如圖,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

問(wèn)題拓展:

如圖,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿(mǎn)足,試猜想當(dāng)∠B∠D滿(mǎn)足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫(xiě)出你的猜想(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=10P為射線(xiàn)AB上一點(diǎn),連接PD、AC,且PDAC交于點(diǎn)E,過(guò)點(diǎn)AAF⊥PD,垂足為點(diǎn)F

(1)當(dāng)點(diǎn)F落在BC邊上時(shí),求AP的值

(2)當(dāng)△PAE為等腰三角形時(shí),求AP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示.下列結(jié)論:①;②;③;④其中正確的個(gè)數(shù)有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線(xiàn)與直線(xiàn)相交于點(diǎn)(點(diǎn)在第一象限),其橫坐標(biāo)為2.

1)求的值;

2)若兩個(gè)圖像在第三象限的交點(diǎn)為,則點(diǎn)的坐標(biāo)為

3)點(diǎn)為此反比例函數(shù)圖像上一點(diǎn),其縱坐標(biāo)為3,過(guò)點(diǎn),交軸于點(diǎn),直接寫(xiě)出線(xiàn)段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案