【題目】如圖,拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸為x=﹣1,且過(guò)點(diǎn)(,0),有下列結(jié)論:①abc>0; ②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正確的結(jié)論是( 。
A.①③B.①③④C.①②③D.①②③④
【答案】C
【解析】
①根據(jù)拋物線(xiàn)的開(kāi)口方向、對(duì)稱(chēng)軸、與y軸的交點(diǎn)即可得結(jié)論;
②根據(jù)拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo)即可得結(jié)論;
③根據(jù)對(duì)稱(chēng)軸和與x軸的交點(diǎn)得另一個(gè)交點(diǎn)坐標(biāo),把另一個(gè)交點(diǎn)坐標(biāo)代入拋物線(xiàn)解析式即可得結(jié)論;
④根據(jù)點(diǎn)(,0)和對(duì)稱(chēng)軸方程即可得結(jié)論.
解:①觀(guān)察圖象可知:
a<0,b<0,c>0,∴abc>0,
所以①正確;
②當(dāng)x=時(shí),y=0,
即a+b+c=0,
∴a+2b+4c=0,
∴a+4c=﹣2b,
∴a﹣2b+4c=﹣4b>0,
所以②正確;
③因?yàn)閷?duì)稱(chēng)軸x=﹣1,拋物線(xiàn)與x軸的交點(diǎn)(,0),
所以與x軸的另一個(gè)交點(diǎn)為(﹣,0),
當(dāng)x=﹣時(shí),a﹣b+c=0,
∴25a﹣10b+4c=0.
所以③正確;
④當(dāng)x=時(shí),a+2b+4c=0,
又對(duì)稱(chēng)軸:﹣=﹣1,
∴b=2a,a=b,
b+2b+4c=0,
∴b=﹣c.
∴3b+2c=﹣c+2c=﹣c<0,
∴3b+2c<0.
所以④錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計(jì)算結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=60°,OC是∠AOB的平分線(xiàn),點(diǎn)D為OC上一點(diǎn),過(guò)D作直線(xiàn)DE⊥OA,垂足為點(diǎn)E,且直線(xiàn)DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于反比例函數(shù)y=﹣,下列說(shuō)法正確的是( 。
A.圖象在第一、三象限B.圖象經(jīng)過(guò)點(diǎn)(2,﹣8)
C.當(dāng)x>0時(shí),y隨x的增大而減小D.當(dāng)x<0時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)內(nèi)從甲地到乙地的路程是,小華步行從甲地到乙地游玩,速度為,走了后,中途休息了一段時(shí)間,然后繼續(xù)按原速前往乙地,景區(qū)從甲地開(kāi)往乙地的電瓶車(chē)每隔半小時(shí)發(fā)一趟車(chē),速度是,若小華與第1趟電瓶車(chē)同時(shí)出發(fā),設(shè)小華距乙地的路程為,第趟電瓶車(chē)距乙地的路程為,為正整數(shù),行進(jìn)時(shí)間為.如圖畫(huà)出了,與的函數(shù)圖象.
(1)觀(guān)察圖,其中 , ;
(2)求第2趟電瓶車(chē)距乙地的路程與的函數(shù)關(guān)系式;
(3)當(dāng)時(shí),在圖中畫(huà)出與的函數(shù)圖象;并觀(guān)察圖象,得出小華在休息后前往乙地的途中,共有 趟電瓶車(chē)駛過(guò).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究問(wèn)題:
⑴方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿(mǎn)足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點(diǎn)G,B,F(xiàn)在同一條直線(xiàn)上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
⑶問(wèn)題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿(mǎn)足,試猜想當(dāng)∠B與∠D滿(mǎn)足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫(xiě)出你的猜想(不必說(shuō)明理由)
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=10,P為射線(xiàn)AB上一點(diǎn),連接PD、AC,且PD、AC交于點(diǎn)E,過(guò)點(diǎn)A作AF⊥PD,垂足為點(diǎn)F.
(1)當(dāng)點(diǎn)F落在BC邊上時(shí),求AP的值
(2)當(dāng)△PAE為等腰三角形時(shí),求AP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示.下列結(jié)論:①;②;③;④其中正確的個(gè)數(shù)有( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線(xiàn)與直線(xiàn)相交于點(diǎn)(點(diǎn)在第一象限),其橫坐標(biāo)為2.
(1)求的值;
(2)若兩個(gè)圖像在第三象限的交點(diǎn)為,則點(diǎn)的坐標(biāo)為 ;
(3)點(diǎn)為此反比例函數(shù)圖像上一點(diǎn),其縱坐標(biāo)為3,過(guò)點(diǎn)作,交軸于點(diǎn),直接寫(xiě)出線(xiàn)段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com