【題目】如圖,在正方形中,、分別是邊、上的點(diǎn),且,相交于點(diǎn),則圖中與相似的三角形有________

【答案】,,

【解析】

利用正方形的性質(zhì),運(yùn)用SAS證明△ABF≌△DAE,再由全等三角形的性質(zhì)可得出答案

∵四邊形ABCD是正方形,
∴AB=AD,∠BAF=∠ADE=90°.
∵CE=DF,
∴AF=DE.
在△ABF與△DAE中,

∴△ABF≌△DAE(SAS).
∴AE=BF;
∴∠AFB=∠AED.
∵∠AED+∠DAE=90°,
∴∠AFB+∠DAE=90°,
∴∠AOF=90°,即AE⊥BF.
∵∠BAF=90°,
∴∠AFB+∠ABF=90°.
∵∠ABF+∠BAM=90°,
∴∠BAM=∠AFM,
∴△ABM∽△FAM.
同理,△ABM∽△FBA.△ABM∽△AED
故答案為:△ABM∽△FAM,△ABM∽△FBA,△ABM∽△AED.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的拋物線的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).

(1)求這個(gè)拋物線的解析式;

(2)如圖,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為直線PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最。咳舸嬖,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)如圖,連接ACy軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,點(diǎn)EAD的中點(diǎn),連接CE,將△CDE沿著CE翻折得到△CFE,EFBC于點(diǎn)GCF的延長(zhǎng)線交AB的延長(zhǎng)線于點(diǎn)H,若AH25,BC40,則FG_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一根長(zhǎng)為的牙刷放置在底面直徑為、高為的圓柱形牙刷筒中,則牙刷露在筒外的長(zhǎng)度最小為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)《實(shí)數(shù)》內(nèi)容時(shí),我們估算帶有根號(hào)的無理數(shù)的近似值時(shí),經(jīng)常使用“逐步逼近”的方法來實(shí)現(xiàn)的.“逐步逼近”是數(shù)學(xué)思維方法的一種重要形式,主要通過構(gòu)造“擬對(duì)象”、逐步擴(kuò)充元素、逐步擴(kuò)充范圍、放縮逼近、合力逼近等方式解決問題.

例如:估算的近似值時(shí),利用“逐步逼近”法可以得出.請(qǐng)你根據(jù)閱讀內(nèi)容回答下列問題:

1介于連續(xù)的兩個(gè)整數(shù),且,那么____________;

2的整數(shù)部分是______,小數(shù)部分是______;

3)已知的小數(shù)部分為,的小數(shù)部分為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《鄭州市城市生活垃圾分類管理辦法》已于2019121日起施行,為了解市民對(duì)垃圾分類的執(zhí)行程度,某數(shù)學(xué)興趣小組對(duì)部分市民進(jìn)行了問卷調(diào)查,調(diào)查結(jié)果分為“A完全做到”“B基本做到”“C偶爾做到”“D很少做到四類,該小組繪制的統(tǒng)計(jì)圖如右:

1)圖中最大的扇形表示調(diào)查結(jié)果為 的市民占所有被調(diào)查市民的 %,這個(gè)扇形的圓心角為 °

2)你從圖中還能得到哪些信息?(寫出一條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形中,對(duì)角線,相交于點(diǎn),且,,動(dòng)點(diǎn)分別從點(diǎn),同時(shí)出發(fā),運(yùn)動(dòng)速度均為,點(diǎn)沿運(yùn)動(dòng),到點(diǎn)停止,點(diǎn)沿運(yùn)動(dòng),到點(diǎn)停止后繼續(xù)運(yùn)動(dòng),到點(diǎn)停止,連接,,.設(shè)的面積為(這里規(guī)定:線段是面積的幾何圖形),點(diǎn)的運(yùn)動(dòng)時(shí)間為

填空:________之間的距離為________;

當(dāng)時(shí),求之間的函數(shù)解析式;

直接寫出在整個(gè)運(yùn)動(dòng)過程中,使與菱形一邊平行的所有的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三邊長(zhǎng)分別為34,5,△DEF的三邊長(zhǎng)分別為3,3x2,2x+1,若這兩個(gè)三角形全等,則x的值為(  )

A. 2 B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銅陵市義安區(qū)實(shí)施了城鄉(xiāng)居民基本醫(yī)療保險(xiǎn)(簡(jiǎn)稱醫(yī)療保險(xiǎn)),辦法規(guī)定農(nóng)村村民只要每人每年交納180元錢就可以加入醫(yī)療保險(xiǎn),住院時(shí)自己先墊付,出院同時(shí)就可得到按一定比例的報(bào)銷款,這項(xiàng)舉措惠及民生,吳斌與同學(xué)隨機(jī)調(diào)查了他們鎮(zhèn)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計(jì)圖.

根據(jù)圖中信息,解答下列問題:

(1)本次調(diào)查了多少村民?被調(diào)查的村民中參加醫(yī)療保險(xiǎn),得到報(bào)銷款的有多少人?

(2)若該鎮(zhèn)有34000村民,請(qǐng)估算有多少人參加了醫(yī)療保險(xiǎn)?要使兩年后參加醫(yī)療保險(xiǎn)的人數(shù)增加到業(yè)務(wù)31460人,假設(shè)這兩年的年增長(zhǎng)率相同,求年增長(zhǎng)率?

查看答案和解析>>

同步練習(xí)冊(cè)答案