【題目】如圖,OAOB是⊙O的半徑,OB2,OAOB,POA上任一點(diǎn),BP的延長(zhǎng)線交⊙O于點(diǎn)Q,過(guò)點(diǎn)Q的⊙O的切線交OA延長(zhǎng)線于點(diǎn)R

1)求證:RPRQ;

2)若OPPQ,求PQ的長(zhǎng).

【答案】(1)證明見(jiàn)解析(2)

【解析】

1)連接OQQR為圓O的切線,得到∠OQR90°,即∠OQB+∠PQR=90°,OAOB垂直根據(jù)垂直的定義得到∠BOA=90°,所以∠B+∠BPO=90°,再根據(jù)對(duì)頂角相等及等角的余角相等,得到∠RPQ=RQP,根據(jù)等角對(duì)等邊得證

2)根據(jù)OP=PQ,等邊對(duì)等角得到∠POQ=PQO,又根據(jù)半徑OB=OQ,再根據(jù)等邊對(duì)等角得到∠B=BQO在三角形OBQ,由∠BOA為直角,設(shè)出∠B=PQO=POQ=x,根據(jù)三角形的內(nèi)角和定理列出關(guān)于x的方程求出方程的解得到x的值,即為∠B的度數(shù),又∠RPQ=BPO=60°,PR=QR所以三角形PRQ為等邊三角形,所以PQ=QR在直角三角形OQR,根據(jù)30°的正切函數(shù)定義OQ=OB=2,即可求出QR的值從而得到PQ的長(zhǎng).

1)連接OQ.∵QR是切線,∴∠OQR=90°,∴∠BQO+∠PQR=90°.

OAOB,∴∠BOA=90°,∴∠B+∠BPO=90°,又∠BPO=RPQ∴∠B+∠RPQ=90°.

OB=OQB=BQO,∴∠RPQ=RQPPR=QR;

2OP=PQ,∴∠POQ=PQO,

OB=OQ∴∠B=PQO,

設(shè)∠B=PQO=POQ=x,又∠BOP=90°,

根據(jù)三角形內(nèi)角和定理得

B+∠BOP+∠POQ+∠PQO=180°,x+90°+x+x=180°,

解得x=30°,即∠B=30°,∴∠RPQ=BPO=60°,PR=QR,∴△PQR為等邊三角形,PQ=QR=PR,

在直角三角形OQROQ=OB=2,

根據(jù)銳角三角函數(shù)定義得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)準(zhǔn)備進(jìn)一批兩種不同型號(hào)的衣服,已知購(gòu)進(jìn)A種型號(hào)衣服9件,B種型號(hào)衣服10件,則共需1810元;若購(gòu)進(jìn)A種型號(hào)衣服12件,B種型號(hào)衣服8件,共需1880元;已知銷售一件A型號(hào)衣服可獲利18元,銷售一件B型號(hào)衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號(hào)衣服不多于28件.

(1)求A、B型號(hào)衣服進(jìn)價(jià)各是多少元?

(2)若已知購(gòu)進(jìn)A型號(hào)衣服是B型號(hào)衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡(jiǎn)述購(gòu)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=ACAD⊥BC,CE⊥AB,AE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著中國(guó)傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場(chǎng)決定開(kāi)展歡度端午,回饋顧客的讓利促銷活動(dòng),對(duì)部分品牌粽子進(jìn)行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽(yáng)光敬老院需購(gòu)買甲品牌粽子80盒,乙品牌粽子100盒,問(wèn)打折后購(gòu)買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F(xiàn)分別是線段BM,CM的中點(diǎn).

(1)求證:△ABM≌△DCM;

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)四邊形MENF是正方形時(shí),求AD:AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A是反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)AABy軸于點(diǎn)B,點(diǎn)Px軸上,△ABP的面積為4,則這個(gè)反比例函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲乙兩名采購(gòu)員去同一家飼料公司分別購(gòu)買兩次飼料,兩次購(gòu)買飼料價(jià)格分別為m/千克和n/千克,且m≠n,兩名采購(gòu)員的采購(gòu)方式也不同,其中甲每次購(gòu)買1000千克,乙每次用去800元,而不管購(gòu)買多少飼料.

(1)甲、乙所購(gòu)飼料的平均單價(jià)各是多少?(用字母m、n表示)

(2)誰(shuí)的購(gòu)貨方式更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊邊長(zhǎng)為8cm,點(diǎn)的中點(diǎn),點(diǎn)在射線上運(yùn)動(dòng),以 為邊在右側(cè)作等邊,作射線交射線于點(diǎn),連接.

(1)當(dāng)點(diǎn)在線段(不包括端點(diǎn))上時(shí),求證:;

(2)求證:平分;

(3)連接,點(diǎn)在移動(dòng)過(guò)程中,線段長(zhǎng)的最小值等于 (直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,平分.

1)如圖1,若,,求證:平分;

2)如圖2,若,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案