【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.
(1)求拋物線的解析式;
(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積為17,若存在,求出點F的坐標;若不存在,請說明理由;
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標.
【答案】
(1)解:∵拋物線y=ax2+bx+c(a≠0)過點C(0,4),
∴c=4 ①.
∵對稱軸x=﹣ =1,
∴b=﹣2a ②.
∵拋物線過點A(﹣2,0),
∴0=4a﹣2b+c ③,
由①②③解得,a=﹣ ,b=1,c=4,
∴拋物線的解析式為y=﹣ x2+x+4
(2)解:方法一:假設存在滿足條件的點F,如圖所示,連結(jié)BF、CF、OF,過點F作FH⊥x軸于點H,F(xiàn)G⊥y軸于點G.
設點F的坐標為(t,﹣ t2+t+4),其中0<t<4,
則FH=﹣ t2+t+4,F(xiàn)G=t,
∴S△OBF= OBFH= ×4×(﹣ t2+t+4)=﹣t2+2t+8,
S△OFC= OCFG= ×4×t=2t,
∴S四邊形ABFC=S△AOC+S△OBF+S△OFC=4﹣t2+2t+8+2t=﹣t2+4t+12.
令﹣t2+4t+12=17,
即t2﹣4t+5=0,
則△=(﹣4)2﹣4×5=﹣4<0,
∴方程t2﹣4t+5=0無解,
故不存在滿足條件的點F
方法二:
∵B(4,0),C(0,4),
∴l(xiāng)BC:y=﹣x+4,
過F點作x軸垂線,交BC于H,設F(t,﹣ t2+t+4),
∴H(t,﹣t+4),
∵S四邊形ABFC=S△ABC+S△BCF=17,
∴ (4+2)×4+ (﹣ t2+t+4+t﹣4)×4=17,
∴t2﹣4t+5=0,
∴△=(﹣4)2﹣4×5<0,
∴方程t2﹣4t+5=0無解,故不存在滿足條件的點F
(3)解:方法一:設直線BC的解析式為y=kx+n(k≠0),
∵B(4,0),C(0,4),
∴ ,
解得 ,
∴直線BC的解析式為y=﹣x+4.
由y=﹣ x2+x+4=﹣ (x﹣1)2+ ,
∴頂點D(1, ),
又點E在直線BC上,則點E(1,3),
于是DE= ﹣3= .
若以D、E、P、Q為頂點的四邊形是平行四邊形,因為DE∥PQ,只須DE=PQ,
設點P的坐標是(m,﹣m+4),則點Q的坐標是(m,﹣ m2+m+4).
① 當0<m<4時,PQ=(﹣ m2+m+4)﹣(﹣m+4)=﹣ m2+2m,
由﹣ m2+2m= ,
解得:m=1或3.
當m=1時,線段PQ與DE重合,m=1舍去,
∴m=3,P1(3,1).
②當m<0或m>4時,PQ=(﹣m+4)﹣(﹣ m2+m+4)= m2﹣2m,
由 m2﹣2m= ,
解得m=2± ,經(jīng)檢驗適合題意,
此時P2(2+ ,2﹣ ),P3(2﹣ ,2+ ).
綜上所述,滿足題意的點P有三個,分別是P1(3,1),P2(2+ ,2﹣ ),P3(2﹣ ,2+ )
方法二:
∵DE∥PQ,
∴當DE=PQ時,以D、E、P、Q為頂點的四邊形是平行四邊形,
∵y=﹣ x2+x+4,
∴D(1, ),
∵lBC:y=﹣x+4,
∴E(1,3),
∴DE= ﹣3= ,
設點F的坐標是(m,﹣m+4),則點Q的坐標是(m,﹣ m2+m+4),
∴|﹣m+4+ m2﹣m﹣4|= ,
∴ m2﹣2m= 或 m2﹣2m=﹣ ,
∴m=1,m=3,m=2+ ,m=2﹣ ,
經(jīng)檢驗,當m=1時,線段PQ與DE重合,故舍去.
∴P1(3,1),P2(2+ ,2﹣ ),P3(2﹣ ,2+ ).
【解析】方法一:(1)先把C(0,4)代入y=ax2+bx+c,得出c=4①,再由拋物線的對稱軸x=﹣ =1,得到b=﹣2a②,拋物線過點A(﹣2,0),得到0=4a﹣2b+c③,然后由①②③可解得,a=﹣ ,b=1,c=4,即可求出拋物線的解析式為y=﹣ x2+x+4;(2)假設存在滿足條件的點F,連結(jié)BF、CF、OF,過點F作FH⊥x軸于點H,F(xiàn)G⊥y軸于點G.設點F的坐標為(t,﹣ t2+t+4),則FH=﹣ t2+t+4,F(xiàn)G=t,先根據(jù)三角形的面積公式求出S△OBF= OBFH=﹣t2+2t+8,S△OFC= OCFG=2t,再由S四邊形ABFC=S△AOC+S△OBF+S△OFC , 得到S四邊形ABFC=﹣t2+4t+12.令﹣t2+4t+12=17,即t2﹣4t+5=0,由△=(﹣4)2﹣4×5=﹣4<0,得出方程t2﹣4t+5=0無解,即不存在滿足條件的點F;(3)先運用待定系數(shù)法求出直線BC的解析式為y=﹣x+4,再求出拋物線y=﹣ x2+x+4的頂點D(1, ),由點E在直線BC上,得到點E(1,3),于是DE= ﹣3= .若以D、E、P、Q為頂點的四邊形是平行四邊形,因為DE∥PQ,只須DE=PQ,設點P的坐標是(m,﹣m+4),則點Q的坐標是(m,﹣ m2+m+4).分兩種情況進行討論:①當0<m<4時,PQ=(﹣ m2+m+4)﹣(﹣m+4)=﹣ m2+2m,解方程﹣ m2+2m= ,求出m的值,得到P1(3,1);②當m<0或m>4時,PQ=(﹣m+4)﹣(﹣ m2+m+4)= m2﹣2m,解方程 m2﹣2m= ,求出m的值,得到P2(2+ ,2﹣ ),P3(2﹣ ,2+ ).方法二:(1)略.(2)利用水平底與鉛垂高乘積的一半,可求出△BCF的面積函數(shù),進而求出點F坐標,因為,所以無解.(3)因為PQ∥DE,所以只需PQ=AC即可,求出PQ的參數(shù)長度便可列式求解.
【考點精析】認真審題,首先需要了解確定一次函數(shù)的表達式(確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法),還要掌握平行四邊形的判定(兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE、CB于點P、Q,連接AC,給出下列結(jié)論:①∠DAC=∠ABC;②AD=CB;③點P是△ACQ的外心;④AC2=AEAB;⑤CB∥GD,其中正確的結(jié)論是( )
A.①③⑤
B.②④⑤
C.①②⑤
D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3,P是AC上一動點,則PB+PE的最小值是( ).
A. 5 B. 5 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OABC是一張放在平面直角坐標系中的矩形紙片,點A在x軸上,點C在y軸上,A點坐標為(10, 0),C點坐標為(0, 6),將邊BC折疊,使點B落在邊OA上的點D處,求線段EA 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,點A、B的坐標分別是A(3,2),B(1,3),△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1 .
(1)點A關(guān)于點O中心對稱的點P的坐標為;
(2)在網(wǎng)格內(nèi)畫出△A1OB1;
(3)點A1、B1的坐標分別為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD交于點O.M為AD中點,連接CM交BD于點N,且ON=1.
(1)求BD的長;
(2)若△DCN的面積為2,求四邊形ABNM的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡,再求值,
(1)2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.
(2)已知a+b=4,ab=﹣2,求代數(shù)式(4a﹣3b﹣2ab)﹣(a﹣6b﹣ab)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com