【題目】如圖,拋物線y=x2+bx+c與x軸相交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(3,0).
(1)求二次函數(shù)的解析式;
(2)求△ABC的面積;
(3)若P是第四象限內(nèi)拋物線上任意一點(diǎn),PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M.求線段PM的最大值.
【答案】(1)y=x2﹣2x﹣3;(2)6;(3)
【解析】
(1)將點(diǎn)A、B的坐標(biāo)代入拋物線表達(dá)式,然后解方程組求出b、c的值即可;
(2)根據(jù)拋物線解析式求得點(diǎn)C的坐標(biāo),易得線段OC,AB的長(zhǎng)度,所以由三角形面積公式解答即可;
(3)根據(jù)平行于y軸直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.
(1)將A(﹣1,0),B(3,0)代入y=x2+bx+c得,
,
解得,
∴拋物線解析式為y=x2﹣2x﹣3;
(2)由A(﹣1,0),B(3,0)知,AB=4.
∵拋物線解析式為y=x2﹣2x﹣3,
∴C(0,﹣3),
∴OC=3.
∴S△ABC=ABOC=×4×3=6,即△ABC的面積是6;
(3)設(shè)BC的解析式為y=kx+t,
將B,C的坐標(biāo)代入函數(shù)解析式,得
,
解得 ,
∴BC的解析式為y=x﹣3,
設(shè)M(n,n﹣3),P(n,n2﹣2n﹣3),
∴PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,
當(dāng)n=時(shí),PM最大=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年5月6日,中國(guó)第一條具有自主知識(shí)產(chǎn)權(quán)的長(zhǎng)沙磁浮線正式開通運(yùn)營(yíng),該路線連接了長(zhǎng)沙火車南站和黃花國(guó)際機(jī)場(chǎng)兩大交通樞紐,沿線生態(tài)綠化帶走廊的建設(shè)尚在進(jìn)行中,屆時(shí)將給乘客帶來(lái)美的享受.星城渣土運(yùn)輸公司承包了某標(biāo)段的土方運(yùn)輸任務(wù),擬派出大、小兩種型號(hào)的渣土運(yùn)輸車運(yùn)輸土方,已知2輛大型渣土運(yùn)輸車與3輛小型渣土運(yùn)輸車一次共運(yùn)輸土方31噸,5輛大型渣土運(yùn)輸車與6輛小型渣土運(yùn)輸車一次共運(yùn)輸土方70噸.
(1)一輛大型渣土運(yùn)輸車和一輛小型渣土運(yùn)輸車一次各運(yùn)輸土方多少噸?
(2)該渣土運(yùn)輸公司決定派出大、小兩種型號(hào)的渣土運(yùn)輸車共20輛參與運(yùn)輸土方,若每次運(yùn)輸土方總量不少于148噸,且小型渣土運(yùn)輸車至少派出2輛,則有哪幾種派車方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10元/斤的某種水果,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為8.1元/斤,并且兩次降價(jià)的百分率相同.
(1)求該種水果每次降價(jià)的百分率;
(2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示:
時(shí)間x(天) | 1≤x≤7 | 8≤x≤14 |
售價(jià)(元/斤) | 第1次降價(jià)后的價(jià)格 | 第2次降價(jià)后的價(jià)格 |
銷量(斤) | 80﹣3x | 120﹣x |
儲(chǔ)存和損耗費(fèi)用(元) | 40+3x | 3x2﹣64x+400 |
已知該種水果的進(jìn)價(jià)為4.1元/斤,設(shè)銷售該水果第x(天)的利潤(rùn)為y(元),求y與x(1≤x≤14)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷售利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位組織職工開展植樹活動(dòng),植樹量與人數(shù)之間的關(guān)系如表,下列說(shuō)法不正確的是( )
A.參加本次植樹活動(dòng)共有29人
B.每人植樹量的眾數(shù)是4
C.每人植樹量的中位數(shù)是5
D.每人植樹量的平均數(shù)是5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)B作BF∥CA交DA的延長(zhǎng)線于點(diǎn)F,AE,BF相交于點(diǎn)H.
(1)圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)
(2)證明:四邊形AHBG是菱形;
(3)若使四邊形AHBG是正方形,還需在Rt△ABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫出這個(gè)條件.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=8,E為CD邊的中點(diǎn),點(diǎn)P、Q為BC邊上兩個(gè)動(dòng)點(diǎn),且PQ=2,當(dāng)BP=_____時(shí),四邊形APQE的周長(zhǎng)最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AB.C內(nèi)接于⊙0,點(diǎn)D在半徑OB的延長(zhǎng)線上,∠BCD=∠A=30°.
(1)判斷直線CD與⊙0的位置關(guān)系,并說(shuō)明理由
(2)若⊙0的半徑為1,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)完反比例函數(shù)的圖象及性質(zhì)后,老師給冋學(xué)們留了這樣一道作業(yè)題:“已知點(diǎn)(﹣1,m)和點(diǎn)(2,n)都在反比例函數(shù)y=(k<0)的圖象上,試比較m和n的大小?”以下是彬彬同學(xué)的解題過(guò)程:
解:∵在反比例函數(shù)y=中,k<0 ①
∴反比例函數(shù)y=,y隨x的增大而增大 ②
∵ ③
∴ ④
(1)彬彬的解答過(guò)程在第 步開始出錯(cuò),出錯(cuò)的原因是 .請(qǐng)你幫助彬彬?qū)懗稣_的解答過(guò)程.
(2)若點(diǎn)(﹣6,p)、點(diǎn)(1,q)和點(diǎn)(3,z)也在反比例函數(shù)y=(k<0)的圖象上,直接比較p、q、z的大小 (結(jié)果用“<”連結(jié))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com