【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣5,0)和點(diǎn)B(1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線上A、D之間的一點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,PG⊥y軸,交拋物線于點(diǎn)G,過點(diǎn)G作GF⊥x軸于點(diǎn)F,當(dāng)矩形PEFG的周長最大時(shí),求點(diǎn)P的橫坐標(biāo);
(3)如圖2,連接AD、BD,點(diǎn)M在線段AB上(不與A、B重合),作∠DMN=∠DBA,MN交線段AD于點(diǎn)N,是否存在這樣點(diǎn)M,使得△DMN為等腰三角形?若存在,求出AN的長;若不存在,請說明理由.
【答案】(1)拋物線的表達(dá)式為:y=﹣x2﹣x+,D(﹣2,4);(2)點(diǎn)P的橫坐標(biāo)為﹣;(3)AN=1或.
【解析】
(1)根據(jù)拋物線過A、B兩點(diǎn),可用交點(diǎn)式求出拋物線的解析式,然后求拋物線的頂點(diǎn)坐標(biāo)即可;
(2)設(shè)點(diǎn)P(m,﹣m2﹣m+),分別用m表示出PE和PG,從而得出矩形的周長與m的二次函數(shù)關(guān)系式,利用二次函數(shù)的頂點(diǎn)式求最值即可;
(3)利用相似三角形的判定定理可得△BDM∽△AMN,列出比例式,并根據(jù)平面直角坐標(biāo)系中任意兩點(diǎn)之間的距離公式分別求出AB、AD、BD,最后根據(jù)等腰三角形的腰的情況分類討論即可.
解:(1)∵拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣5,0)和點(diǎn)B(1,0)
∴拋物線的表達(dá)式為:y=﹣(x+5)(x﹣1)=﹣x2﹣x+,
則頂點(diǎn)坐標(biāo)的橫坐標(biāo)為: ,代入可得頂點(diǎn)坐標(biāo)的縱坐標(biāo)為:4
∴點(diǎn)D(﹣2,4);
(2)設(shè)點(diǎn)P(m,﹣m2﹣m+),
則PE=﹣m2﹣m+,PG=2(﹣2﹣m)=﹣4﹣2m,
∴矩形PEFG的周長=2(PE+PG)=2(﹣m2﹣m+﹣4﹣2m)=﹣(m+)2+,
∵﹣<0,故當(dāng)m=﹣時(shí),矩形PEFG周長最大,
此時(shí),點(diǎn)P的橫坐標(biāo)為﹣;
(3)∵∠DMN=∠DBA,
∠BMD+∠BDM=180°﹣∠ADB,
∠NMA+∠DMB=180°﹣∠DMN,
∴∠NMA=∠MDB,
∴△BDM∽△AMN,
∴,
而AB=1-(﹣5)=6,AD=BD==5,
①當(dāng)MN=DM時(shí),
∴△BDM≌△AMN,
即:AM=BD=5,則AN=MB=AB-AM=1;
②當(dāng)NM=DN時(shí),
則∠NDM=∠NMD,
∴△AMD∽△ADB,
∴AD2=AB×AM,即:25=6×AM,則AM=,
而,即,
解得:AN=;
③當(dāng)DN=DM時(shí),
∵∠DNM>∠DAB,而∠DAB=∠DMN,
∴∠DNM>∠DMN,
∴DN≠DM;
綜上所述:AN=1或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家銷售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷售40件,每銷售一件需支付給商場管理費(fèi)5元,未來一個(gè)月按30天計(jì)算,這款商品將開展“每天降價(jià)1元”的促銷活動(dòng),即從第一天開始每天的單價(jià)均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷售量增加2件,設(shè)第x天且x為整數(shù)的銷售量為y件.
直接寫出y與x的函數(shù)關(guān)系式;
設(shè)第x天的利潤為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△PAB為直角三角形時(shí),AP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在AB上,點(diǎn)E在AC延長線上,且BD=CE,連接DE交BC于點(diǎn)F,作DH⊥BC于點(diǎn)H,連接CD.若tan∠DFH=,S△BCD=18,則DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=4﹣x與雙曲線y交于A,B兩點(diǎn),過B作直線BC⊥y軸,垂足為C,則以OA為直徑的圓與直線BC的交點(diǎn)坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形 ABCO 的一邊 OA 在 x 軸上,,反比例函數(shù)過菱形的頂點(diǎn) C 和 AB 邊上的中點(diǎn)E,則k的值為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與 x 軸交于點(diǎn) C,與 y 軸交于點(diǎn) B,拋物線 經(jīng)過 B、C 兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn) E 是拋物線上的一動(dòng)點(diǎn)(不與 B,C 兩點(diǎn)重合),△BEC 面積記為 S,當(dāng) S 取何值時(shí),對應(yīng)的點(diǎn) E 有且只有三個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),求拋物線的解析式;
(2)求支柱的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=9,點(diǎn)C為線段AB上一點(diǎn),AC=3,點(diǎn)D為平面內(nèi)一動(dòng)點(diǎn),且滿足CD=3,連接BD將BD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90到DE,連接BE、AE,則AE的最大值為 ________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com