【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O交斜邊AC于點D,過圓心O作OE∥AC,交BC于點E,連接DE.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)求證:2DE2=CDOE;
(3)若tanC=,DE=,求AD的長.
【答案】(1)DE是⊙O的切線,理由見解析;(2)證明見解析;(3)
【解析】(1)先判斷出DE=BE=CE,得出∠DBE=∠BDE,進而判斷出∠ODE=90°,即可得出結(jié)論;
(2)先判斷出△BCD∽△ACB,得出BC2=CDAC,再判斷出DE=BC,AC=2OE,即可得出結(jié)論;
(3)先求出BC,進而求出BD,CD,再借助(2)的結(jié)論求出AC,即可得出結(jié)論.
(1)DE是⊙O的切線,理由:如圖,
連接OD,BD,∵AB是⊙O的直徑,
∴∠ADB=∠BDC=90°,
∵OE∥AC,OA=OB,
∴BE=CE,
∴DE=BE=CE,
∴∠DBE=∠BDE,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODE=∠OBE=90°,
∵點D在⊙O上,
∴DE是⊙O的切線;
(2)∵∠BCD=∠ABC=90°,∠C=∠C,
∴△BCD∽△ACB,
∴,
∴BC2=CDAC,
由(1)知DE=BE=CE=BC,
∴4DE2=CDAC,
由(1)知,OE是△ABC是中位線,
∴AC=2OE,
∴4DE2=CD2OE,
∴2DE2=CDOE;
(3)∵DE=,
∴BC=5,
在Rt△BCD中,tanC=,
設(shè)CD=3x,BD=4x,根據(jù)勾股定理得,(3x)2+(4x)2=25,
∴x=-1(舍)或x=1,
∴BD=4,CD=3,
由(2)知,BC2=CDAC,
∴AC=,
∴AD=AC-CD=-3=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點F,作CM⊥AD,垂足為M,下列結(jié)論不正確的是( 。
A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把 6個相同的小正方體擺成如圖的幾何體.
(1)畫出該幾何體的主視圖、左視圖、俯視圖;
(2)如果每個小正方體棱長為,則該幾何體的表面積是 .
(3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;
(2)設(shè)∠BAC= ,∠DCE= .
① 如圖2,當點D在線段CB上,∠BAC≠90°時,請你探究與之間的數(shù)量關(guān)系,并證明你的結(jié)論;
② 如圖3,當點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補充完整,并直接寫出此時與之間的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的中位數(shù),用max{a,b,c}表示這三個數(shù)中最大數(shù),例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=
解決問題:
(1)填空:M{sin45°,cos60°,tan60°}=__________,如果max{3,5﹣3x,2x﹣6}=3,則x的取值范圍為__________;
(2)如果2M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;
(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=8cm,BC=10cm,折疊矩形的一邊AD,使點D落在BC邊上的點F處,折痕為AE.以點A為原點,分別以AD所在的直線為x軸,AB所在的直線為y軸建立坐標系.
(1)寫出點B、D、E、F的坐標;
(2)在坐標軸上是否存在點G,使△AFG是以AF為腰長的等腰三角形?若存在,請求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題.
(1)
(2)
(3)2002-202×198
(4)
(5)[(2x+y)2﹣y(y+4x)﹣8xy]÷(﹣2x).其中x=-2,y=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為:A(-1,2),B(-2,-1),C(2,0).
(1)作圖:將△ABC先向右平移4個單位,再向上平移3個單位,則得到△A1B1C1,作出△A1B1C1;(不要求寫作法)
(2)寫出下列點的坐標:A1______;B1______;C1______.
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com