【題目】 6個相同的小正方體擺成如圖的幾何體.

1)畫出該幾何體的主視圖、左視圖、俯視圖;

2)如果每個小正方體棱長為,則該幾何體的表面積是

3)如果在這個幾何體上再添加一些相同的小正方體,并并保持左視圖和俯視圖不變,那么最多可以再 添加 個小正方體.

【答案】1)見解析;(226;(32.

【解析】

1)依據(jù)畫幾何體三視圖的原理畫出視圖;

2)該幾何體的表面積為主視圖、左視圖、俯視圖面積和的兩倍,根據(jù)(1)中的三視圖即可求解.

3)利用左視圖的俯視圖不變,得出可以添加的位置.

1)三視圖如圖:

2)該幾何體的表面積為主視圖、左視圖、俯視圖面積和的兩倍,

所以該幾何體的表面積為 2×(4+3+5)=24cm2

3)∵添加后左視圖和俯視圖不變,

∴最多可以在第二行的第一列和第二列各添加一個小正方體,

∴最多可以再添加2個小正方體.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABDCBD關于直線BD對稱,點EBC上一點,線段CE的垂直平分線交BD于點F,連接AF、EF

1求證:AFEF;

2如圖2,連接AEBD于點G.若EFCD,求證:;

3如圖3,若∠BAD90°,且點EBF的垂直平分線上,tanABD,DF,請直接寫出AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某路燈在鉛垂面內的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為αβ,且tanα=6,tanβ=,求燈桿AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,已知△ABC為直角三角形,∠A90°,若沿圖中虛線剪去∠A,則∠1+∠2等于(  )

A90° B135° C270° D315°

(2)如圖②,已知△ABC中,∠A40°,剪去∠A后成四邊形,則∠1+∠2=________°;

(3)根據(jù)(1)與(2)的求解過程,請你歸納猜想∠1+∠2與∠A的關系是______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列不等式或者不等式組

1

2(把它的解集在數(shù)軸上表示出來)

3(把它的解集在數(shù)軸上表示出來)

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以RtABC的直角邊AB為直徑作⊙O交斜邊AC于點D,過圓心OOEAC,交BC于點E,連接DE

(1)判斷DE與⊙O的位置關系并說明理由;

(2)求證:2DE2=CDOE;

(3)若tanC=,DE=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.

(1)求證:△ACD≌△BCE;

(2)若AB=2cm,則BE=_______cm.

(3)BE與AD有何位置關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、BC三點在一條直線上,根據(jù)圖形填空:

1AC   +   +   ;

2ABAC   ;

3DB+BC   AD

4)若AC8cm,D是線段AC中點,B是線段DC中點,求線段AB的長.

查看答案和解析>>

同步練習冊答案