11.已知:如圖在△ABC中,AD是它的角平分線,AB:AC=5:3,則S△ABD:S△ACD=5:3.

分析 根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的邊AC上的高相等,根據(jù)三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對應(yīng)邊之比.

解答 解:∵AD是△ABC的角平分線,
∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,
∴h1=h2
∴△ABD與△ACD的面積之比=AB:AC=5:3,
故答案為:5:3.

點評 本題考查了角平分線的性質(zhì),以及三角形的面積公式,熟練掌握三角形角平分線的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.在邊長為12cm的正方形紙片,點P在邊BC上,折疊紙片使點A恰好落在點P上,BP=5cm,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.如圖,△ABC中,AC=BC,AB=4,∠ACB=90°,以AB的中點D為圓心DC長為半徑作$\frac{1}{4}$圓DEF,設(shè)∠BDF=α(0°<α<90°),當(dāng)α變化時圖中陰影部分的面積為π-2($\frac{1}{4}$圓:∠EDF=90°,$\frac{1}{4}$圓的面積=$\frac{1}{4}π•{r}^{2}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在△ABC中,∠C=45°,BC=12,高AD=10,矩形EFPQ的一邊QP邊上,E、F兩點分別在AB、AC上,AD交EF于點H.
(1)求證:$\frac{AH}{AD}=\frac{EF}{BC}$;
(2)設(shè)BF=x,當(dāng)x為何值時,矩形EFPQ的面積最大?并求其最大值;
(3)當(dāng)矩形EFPQ的面積最大時,該矩形以每秒1個單位的速度沿射線QC勻速運動(當(dāng)點Q與點C重合時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.1.252012×($\frac{4}{5}$)2014的值是( 。
A.$\frac{4}{5}$B.$\frac{16}{25}$C.1D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.下列運算正確的是( 。
A.x8÷x2=x4B.(x23=x5C.(-3xy)2=6x2y2D.2x2y•3xy=6x3y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.點A(a,b)在x軸上,則ab=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,D,E分別是△ABC的邊AB,AC上的中點,CD與BE交于點O,則S△DOE:S△BOC的值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{9}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.下列圖形中,是軸對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案