【題目】已知拋物線G:有最低點(diǎn)。
(1)求二次函數(shù)的最小值(用含m的式子表示);
(2)將拋物線G向右平移m個單位得到拋物線G1。經(jīng)過探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個函數(shù)關(guān)系,求這個函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點(diǎn)P,結(jié)合圖像,求點(diǎn)P的縱坐標(biāo)的取值范圍.
【答案】(1)二次函數(shù)的最小值是;(2);(3)-4-3.
【解析】
(1)拋物線有最低點(diǎn)即開口向上,m>0,用配方法或公式法求得對稱軸和函數(shù)最小值.
(2)寫出拋物線G的頂點(diǎn)式,根據(jù)平移規(guī)律即得到拋物線G1的頂點(diǎn)式,進(jìn)而得到拋物線G1頂點(diǎn)坐標(biāo)(m+1,-m-3),即x=m+1,y=-m-3,x+y=-2即消去m,得到y與x的函數(shù)關(guān)系式.再由m>0,即求得x的取值范圍.
(3)求出拋物線恒過點(diǎn)B(2,-4),函數(shù)H圖象恒過點(diǎn)A(2,-3),由圖象可知兩圖象交點(diǎn)P應(yīng)在點(diǎn)A、B之間,即點(diǎn)P縱坐標(biāo)在A、B縱坐標(biāo)之間.
解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,拋物線有最低點(diǎn),
∴二次函數(shù)y=mx2-2mx-3的最小值為-m-3.
(2)∵拋物線G:y=m(x-1)2-m-3,
∴平移后的拋物線G1:y=m(x-1-m)2-m-3,
∴拋物線G1頂點(diǎn)坐標(biāo)為(m+1,-m-3),
∴x=m+1,y=-m-3,
∴x+y=m+1-m-3=-2.
即x+y=-2,變形得y=-x-2.
∵m>0,m=x-1.
∴x-1>0,
∴x>1,
∴y與x的函數(shù)關(guān)系式為y=-x-2(x>1).
(3)如圖,函數(shù)H:y=-x-2(x>1)圖象為射線,
x=1時,y=-1-2=-3;x=2時,y=-2-2=-4,
∴函數(shù)H的圖象恒過點(diǎn)B(2,-4),
∵拋物線G:y=m(x-1)2-m-3,
x=1時,y=-m-3;x=2時,y=m-m-3=-3.
∴拋物線G恒過點(diǎn)A(2,-3),
由圖象可知,若拋物線與函數(shù)H的圖象有交點(diǎn)P,則yB<yP<yA,
∴點(diǎn)P縱坐標(biāo)的取值范圍為-4<yP<-3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,則下列結(jié)論中正確的是( )
A.
B. 當(dāng)時,隨的增大而減小
C.
D. 是關(guān)于的方程的一個根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD是半圓O的直徑,A是BD延長線上的一點(diǎn),BC⊥AE,交AE的延長線于點(diǎn)C,交半圓O于點(diǎn)F,且E為弧DF的中點(diǎn).
(1)求證:AC是半圓O的切線;
(2)若BC=8,BE=6,求半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+(m+1)x﹣m﹣2(m>0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,不論m取何正數(shù),經(jīng)過A、B、C三點(diǎn)的⊙P恒過y軸上的一個定點(diǎn),則該定點(diǎn)的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師將1個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球?qū)嶒?yàn),每次摸出一個球(有放回),下表是活動進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù)。
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù)m | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的頻率mn | 0.23 | 0.21 | 0.30 | 0.26 | 0.253 |
(1)補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計(jì)從袋中摸出一個球是黑球的概率是______;(保留小數(shù)點(diǎn)后兩位)
(2)估算袋中白球的個數(shù);
(3)在(2)的條件下,若小強(qiáng)同學(xué)有放回地連續(xù)兩次摸球,用畫樹形圖或列表的方法計(jì)算他兩次都摸出白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線與直線交于,兩點(diǎn),點(diǎn)是拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)是直線上方拋物線上的一個動點(diǎn),其橫坐標(biāo)為,過點(diǎn)作軸的垂線,交直線于點(diǎn),當(dāng)線段的長度最大時,求的值及的最大值.
(3)在拋物線上是否存在異于、的點(diǎn),使中邊上的高為,若存在求出點(diǎn)的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,則∠BED的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠BAC=120°,D為BC邊上的點(diǎn),將DA繞D點(diǎn)逆時針旋轉(zhuǎn)120°得到DE.
(1)如圖1,若AD=DC,則BE的長為 ,BE2+CD2與AD2的數(shù)量關(guān)系為 ;
(2)如圖2,點(diǎn)D為BC邊山任意一點(diǎn),線段BE、CD、AD是否依然滿足(1)中的關(guān)系,試證明;
(3)M為線段BC上的點(diǎn),BM=1,經(jīng)過B、E、D三點(diǎn)的圓最小時,記D點(diǎn)為D1,當(dāng)D點(diǎn)從D1處運(yùn)動到M處時,E點(diǎn)經(jīng)過的路徑長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為的直徑,BC為的切線,弦AD∥OC,直線CD交的BA延長線于點(diǎn)E,連接BD.下列結(jié)論:①CD是的切線;②;③;④.其中正確結(jié)論的個數(shù)有( 。
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com