【題目】如圖,AB的直徑,BC的切線,弦ADOC,直線CD交的BA延長(zhǎng)線于點(diǎn)E,連接BD.下列結(jié)論:①CD的切線;②;③;④.其中正確結(jié)論的個(gè)數(shù)有(  )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

【答案】A

【解析】

由切線的性質(zhì)得,首先連接,易證得,然后由全等三角形的對(duì)應(yīng)角相等,求得,即可證得直線的切線,根據(jù)全等三角形的性質(zhì)得到,根據(jù)線段垂直平分線的判定定理得到即,故②正確;根據(jù)余角的性質(zhì)得到,等量代換得到,根據(jù)相似三角形的判定定理得到,故③正確;根據(jù)相似三角形的性質(zhì)得到,于是得到,故④正確.

解:連結(jié)

的直徑,的切線,

,

,

,

中,,

點(diǎn)上,

的切線;故①正確,

,

,

垂直平分,

,故②正確;

的直徑,的切線,

,

,

,

,

,

,故③正確;

,

,

,

,

,故④正確;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線G有最低點(diǎn)。

1)求二次函數(shù)的最小值(用含m的式子表示);

2)將拋物線G向右平移m個(gè)單位得到拋物線G1。經(jīng)過(guò)探究發(fā)現(xiàn),隨著m的變化,拋物線G1頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間存在一個(gè)函數(shù)關(guān)系,求這個(gè)函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

3)記(2)所求的函數(shù)為H,拋物線G與函數(shù)H的圖像交于點(diǎn)P,結(jié)合圖像,求點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形中,,,點(diǎn)、分別在邊上,將四邊形沿直線翻折,點(diǎn)的對(duì)稱點(diǎn)分別記為、.

1)當(dāng)時(shí),若點(diǎn)恰好落在線段上,求的長(zhǎng);

2)設(shè),若翻折后存在點(diǎn)落在線段上,則的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠C90°,EAB邊上一點(diǎn),DAC邊上一點(diǎn),且點(diǎn)D不與A、C重合,EDAC

1)當(dāng)sinB=時(shí),

①求證:BE2CD.

②當(dāng)ADE繞點(diǎn)A旋轉(zhuǎn)到如圖2的位置時(shí)(45°<∠CAD90°).BE2CD是否成立?若成立,請(qǐng)給出證明;若不成立.請(qǐng)說(shuō)明理由.

2)當(dāng)sinB=時(shí),將ADE繞點(diǎn)A旋轉(zhuǎn)到∠DEB90°,若AC10AD2,求線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓內(nèi)接四邊形ABDCAB⊙O的直徑,OD⊥BCE

1)求證:∠BCD=∠CBD

2)若BE=4,AC=6,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義一種新函數(shù):形如,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫(huà)出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫(xiě)出下列五個(gè)結(jié)論:①圖象與坐標(biāo)軸的交點(diǎn)為,;②圖象具有對(duì)稱性,對(duì)稱軸是直線;③當(dāng)時(shí),函數(shù)值值的增大而增大;④當(dāng)時(shí),函數(shù)的最小值是0;⑤當(dāng)時(shí),函數(shù)的最大值是4.其中正確結(jié)論的個(gè)數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)yb0)與二次函數(shù)yax2+bxa0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同學(xué)張豐用一張長(zhǎng)18cm、寬12cm矩形紙片折出一個(gè)菱形,他沿矩形的對(duì)角線AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四邊形AECF(如圖).

1)證明:四邊形AECF是菱形;

2)求菱形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市要選拔一名教師參加省級(jí)評(píng)優(yōu)課比賽:經(jīng)筆試、面試,結(jié)果小潘和小丁并列第一,評(píng)委會(huì)決定通過(guò)摸球來(lái)確定人選.規(guī)則如下:在不透明的布袋里裝有除顏色之外均相同的2個(gè)紅球和1個(gè)藍(lán)球,小潘先取出一個(gè)球,記住顏色后放回,然后小丁再取出一個(gè)球.若兩次取出的球都是紅球,則小潘勝出;若兩次取出的球是一紅一藍(lán),則小丁勝出.你認(rèn)為這個(gè)規(guī)則對(duì)雙方公平嗎?請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法進(jìn)行分析.

查看答案和解析>>

同步練習(xí)冊(cè)答案