【題目】如圖,ABCADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點(diǎn)D在線段BC上,AF平分DEBC于點(diǎn)F,連接BE,EF.

(1)CDBE相等?若相等,請(qǐng)證明;若不相等,請(qǐng)說(shuō)明理由;

(2)若∠BAC=90°,求證:BF2+CD2=FD2

【答案】(1)CD=BE,理由見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】分析:(1)由兩個(gè)三角形為等腰三角形可得ABACAEAD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據(jù)“SAS”可證得EABCAD即可得出結(jié)論;

(2)根據(jù)(1)中結(jié)論和等腰直角三角形的性質(zhì)得出∠EBF=90°,在RtEBF中由勾股定理得出BF2BE2EF2然后證得EFFD,BECD,等量代換即可得出結(jié)論.

詳解:(1)CDBE,理由如下:

ABCADE為等腰三角形,

ABAC,ADAE

∵∠EAD=∠BAC,

∴∠EADBAD=∠BACBAD,

即∠EAB=∠CAD,

EABCAD

EABCAD,

BECD;

(2)∵∠BAC90°,

ABCADE都是等腰直角三角形,

∴∠ABF=∠C45°,

∵△EAB≌△CAD

∴∠EBA=∠C,

∴∠EBA45°,

∴∠EBF90°,

RtBFE中,BF2BE2EF2,

AF平分DE,AEAD,

AF垂直平分DE,

EFFD

由(1)可知,BECD,

BF2CD2FD2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1930年,德國(guó)漢堡大學(xué)的學(xué)生考拉茲,曾經(jīng)提出過(guò)這樣一個(gè)數(shù)學(xué)猜想:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2.如此循環(huán),最終都能夠得到1.這一猜想后來(lái)成為著名的考拉茲猜想,又稱奇偶?xì)w一猜想.雖然這個(gè)結(jié)論在數(shù)學(xué)上還沒(méi)有得到證明,但舉例驗(yàn)證都是正確的,例如:取正整數(shù)5,最少經(jīng)過(guò)下面5步運(yùn)算可得1,即:如果正整數(shù)最少經(jīng)過(guò)6步運(yùn)算可得到1,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AD,對(duì)角線BD為⊙O的直徑,AC與BD交于點(diǎn)E.點(diǎn)F為CD延長(zhǎng)線上,且DF=BC.

(1)證明:AC=AF;

(2)若AD=2,AF=,求AE的長(zhǎng);

(3)若EG∥CF交AF于點(diǎn)G,連接DG.證明:DG為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海中一漁船在A處與小島C相距70海里,若該漁船由西向東航行30海里到達(dá)B處,此時(shí)測(cè)得小島C位于B的北偏東30°方向上,則該漁船此時(shí)與小島C之間的距離是_____海里.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.

(1)求反比例函數(shù)的表達(dá)式;

(2)將線段AB沿x軸向右平移5個(gè)單位到DC,設(shè)DC與雙曲線交于點(diǎn)E,求點(diǎn)Ex軸的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某項(xiàng)工程由甲、乙兩個(gè)工程隊(duì)合作完成,先由甲隊(duì)單獨(dú)做3天,剩下的工作由甲、乙兩工程隊(duì)合作完成,工程進(jìn)度滿足如圖所示的函數(shù)關(guān)系:

1)求出圖象中②部分的解析式,并求出完成此項(xiàng)工程共需的天數(shù);

2)該工程共支付8萬(wàn)元,若按完成的工作量所占比例支付工資,甲工程隊(duì)?wèi)?yīng)得多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E、F分別是菱形ABCD的邊BC、CD上的點(diǎn),且∠EAF=∠D=60°,∠FAD=45°,則∠CFE=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,是線段上一動(dòng)點(diǎn),沿的路線以的速度往返運(yùn)動(dòng)1次,是線段的中點(diǎn),,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.

1)當(dāng)時(shí),則線段 ,線段 .

2)用含的代數(shù)式表示運(yùn)動(dòng)過(guò)程中的長(zhǎng).

3)在運(yùn)動(dòng)過(guò)程中,若的中點(diǎn)為,問(wèn)的長(zhǎng)是否變化?與點(diǎn)的位置是否無(wú)關(guān)?

4)知識(shí)遷移:如圖2,已知,過(guò)角的內(nèi)部任一點(diǎn)畫射線,若分別平分,問(wèn)∠EOC的度數(shù)是否變化?與射線的位置是否無(wú)關(guān)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按要求畫圖,并解答問(wèn)題

1)如圖,取BC邊的中點(diǎn)D,畫射線AD;

2)分別過(guò)點(diǎn)BCBEAD于點(diǎn)E,CFAD于點(diǎn)F;

3BECF的位置關(guān)系是   ;通過(guò)度量猜想BECF的數(shù)量關(guān)系是   

查看答案和解析>>

同步練習(xí)冊(cè)答案