【題目】如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.
(1)求反比例函數(shù)的表達(dá)式;
(2)將線段AB沿x軸向右平移5個(gè)單位到DC,設(shè)DC與雙曲線交于點(diǎn)E,求點(diǎn)E到x軸的距離.
【答案】(1)反比例函數(shù)的解析式為y=;(2)點(diǎn)E到x軸的距離為.
【解析】分析:(1)把點(diǎn)A(4,n)代入一次函數(shù)y=x-3,得到n的值為3;再把點(diǎn)A(4,3)代入反比例函數(shù)y=,得到k的值為12,即可寫出方比例函數(shù)的解析式;
(2)設(shè)E(,m),根據(jù)tan∠ECx=tan∠ABC構(gòu)建方程即可解決問題.
詳解:(1)把點(diǎn)A(4,n)代入一次函數(shù)y=x﹣3,
可得n=×4﹣3=3;
把點(diǎn)A(4,3)代入反比例函數(shù)y=,
可得3=,
解得k=12.
∴反比例函數(shù)的解析式為y=.
(2)設(shè)E(,m),
一次函數(shù)y=x-3與x軸交點(diǎn)B(2,0),
BC=AD=5,
∴OC=7,
∵tan∠ECx=tan∠ABC,
∴=,
解得m=(負(fù)根已經(jīng)舍棄),
∴點(diǎn)E到x軸的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為拓寬銷售渠道,某水果商店計(jì)劃將146個(gè)柚子和400個(gè)橙子裝入大、小兩種禮箱進(jìn)行出售,其中每件小禮箱裝2個(gè)柚子和4個(gè)橙子;每件大禮箱裝3個(gè)柚子和9個(gè)橙子.要求每件禮箱都裝滿,柚子恰好全部裝完,橙子有剩余,設(shè)小禮箱的數(shù)量為x件.
(1)大禮箱的數(shù)量為________件(用含x的代數(shù)式表示).
(2)若橙子剩余12個(gè),則需要大、小兩種禮箱共多少件?
(3)由于橙子有剩余,則小禮箱至少需要________件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是學(xué)習(xí)初中數(shù)學(xué)的- -個(gè)重要工具利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)為,則兩點(diǎn)之間的距離,若,則可簡化為;線段的中點(diǎn)表示的數(shù)為如圖,已知數(shù)軸上有兩點(diǎn),分別表示的數(shù)為,點(diǎn)以每秒個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)以每秒個(gè)單位長度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)運(yùn)動(dòng)開始前,兩點(diǎn)的距離為多少個(gè)單位長度;線段的中點(diǎn)所表示的數(shù)為?
(2)點(diǎn)運(yùn)動(dòng)秒后所在位置的點(diǎn)表示的數(shù)為 ;點(diǎn) 運(yùn)動(dòng)秒后所在位置的點(diǎn)表示的數(shù)為 . (用含的式子表示
(3)它們按上述方式運(yùn)動(dòng),兩點(diǎn)經(jīng)過多少秒會(huì)相距個(gè)單位長度?
(4)若按上述方式運(yùn)動(dòng), 兩點(diǎn)經(jīng)過多少秒,線段的中點(diǎn)與原點(diǎn)重合?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,其面積標(biāo)記為S1,以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2,…按照此規(guī)律繼續(xù)下去,則S2016的值為( )
A. ()2013B. ()2014C. ()2013D. ()2014
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點(diǎn)D在線段BC上,AF平分DE交BC于點(diǎn)F,連接BE,EF.
(1)CD與BE相等?若相等,請證明;若不相等,請說明理由;
(2)若∠BAC=90°,求證:BF2+CD2=FD2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+2 與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,AB=4.矩形OADC的邊CD=1,延長DC交拋物線于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P是直線EO 上方拋物線上的一個(gè)動(dòng)點(diǎn),作PH⊥EO,垂足為H,求PH的最大值;
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,若四邊形ACMN是平行四邊形,求點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“2018東臺西溪半程馬拉松”的賽事共有兩項(xiàng):A、“半程馬拉松”、 B、“歡樂跑”。小明參加了該項(xiàng)賽事的志愿者服務(wù)工作, 組委會(huì)隨機(jī)將志愿者分配到兩個(gè)項(xiàng)目組.
(1)小明被分配到“半程馬拉松”項(xiàng)目組的概率為________.
(2)為估算本次賽事參加“半程馬拉松”的人數(shù),小明對部分參賽選手作如下調(diào)查:
調(diào)查總?cè)藬?shù) | 20 | 50 | 100 | 200 | 500 |
參加“半程馬拉松”人數(shù) | 15 | 33 | 72 | 139 | 356 |
參加“半程馬拉松”頻率 | 0.750 | 0.660 | 0.720 | 0.695 | 0.712 |
①請估算本次賽事參加“半程馬拉松”人數(shù)的概率為_______.(精確到0.1)
②若本次參賽選手大約有3000人,請你估計(jì)參加“半程馬拉松”的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點(diǎn)A落在BC 邊上的點(diǎn)D處,EF為折痕,若AE=2,則的值為_____________.
【答案】
【解析】分析:過點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,
在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得, ;
設(shè)AF=DF=x,則FG= ,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值
詳解:
如圖所示,過點(diǎn)D作DGAB于點(diǎn)G.
根據(jù)折疊性質(zhì),可知△AEF△DEF,
∴AE=DE=2,AF=DF,CE=AC-AE=1,
在Rt△DCE中,由勾股定理得,
∴DB=;
在Rt△ABC中,由勾股定理得;
在Rt△DGB中, , ;
設(shè)AF=DF=x,得FG=AB-AF-GB=,
在Rt△DFG中, ,
即=,
解得,
∴==.
故答案為: .
點(diǎn)睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識來解決問題.
【題型】填空題
【結(jié)束】
18
【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).
①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;
②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com