【題目】如圖,正方形是由兩個(gè)小正方形和兩個(gè)小長(zhǎng)方形組成的,根據(jù)圖形解答下列問題:

1)請(qǐng)用兩種不同的方法表示正方形的面積,并寫成一個(gè)等式;

2)運(yùn)用(1)中的等式,解決以下問題:

①已知,,求的值;

②已知,,求的值.

【答案】1)正方形的面積可表示為:;等式:;(2)①;②103.

【解析】

1)用正方形的面積公式直接求出正方形的面積;利用四個(gè)矩形的面積之和求出正方形的面積,即可得到一個(gè)等式;

2)①根據(jù)(1)中的等式進(jìn)行直接求解即可;

②令a=x-y,對(duì)等式進(jìn)行變形后,利用(1)中的等式進(jìn)行求解.

1)正方形ABCD的面積可表示為:

等式:

2)①∵,,

由(1)得:

②令a=x-y,則a+z=11,az=9

∴原式可變形為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,二次函數(shù)y=x2+bx+c的圖象過點(diǎn)A(1,0)和C(0,﹣3)

(1)求這個(gè)二次函數(shù)的解析式;

(2)如果這個(gè)二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為B,求線段AB的長(zhǎng).

(3)在這條拋物線上是否存在一點(diǎn)P,使ABP的面積為8?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為A(1,0),B(3,0),探究拋物線m為常數(shù)x軸于點(diǎn)M、N兩點(diǎn)

(1)當(dāng)m=2時(shí)

求出拋物線的頂點(diǎn)坐標(biāo)及線段MN的長(zhǎng);

拋物線上有一點(diǎn)P,使求出點(diǎn)P的坐標(biāo);

(2)對(duì)于拋物線m為常數(shù)).

線段MN的長(zhǎng)是否發(fā)生變化,請(qǐng)說(shuō)明理由

若該拋物線與線段AB有公共點(diǎn),請(qǐng)直接寫出m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本題滿分12分拋物線y=-x2+m-1x+m與y軸交于0,3點(diǎn).

1求出m的值并畫出這條拋物線;

2求它與x軸的交點(diǎn)和拋物線頂點(diǎn)的坐標(biāo);

3x取什么值時(shí),拋物線在x軸上方?

4x取什么值時(shí),y的值隨x值的增大而減?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在直角三角形ABC中,∠BAC=90°,AB=AC,DBC的中點(diǎn),EAC上一點(diǎn),點(diǎn)GBE上,連接DG并延長(zhǎng)交AEF,若∠FGE=45°.

(1)求證:BDBC=BGBE;

(2)求證:AG⊥BE;

(3)若EAC的中點(diǎn),求EF:FD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一個(gè)直徑為10cm的玻璃球和一個(gè)圓錐形的牛皮紙紙帽制作一個(gè)不倒翁玩具,不倒翁的軸截面如圖所示,圓錐的母線AB與⊙O相切于點(diǎn)B,不倒翁的頂點(diǎn)A到桌面L的最大距離是18cm.若將圓錐形紙帽表面全涂上顏色,則涂色部分的面積為_____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx8x軸,y軸分別交于點(diǎn)A,B,直線yx1與直線AB交于點(diǎn)C,與y軸交于點(diǎn)D

1)求點(diǎn)C的坐標(biāo).

2)求BDC的面積.

3)如圖,Py軸正半軸上的一點(diǎn),Q是直線AB上的一點(diǎn),連接PQ

①若PQx軸,且點(diǎn)A關(guān)于直線PQ的對(duì)稱點(diǎn)A恰好落在直線CD上,求PQ的長(zhǎng).

②若BDCBPQ全等(點(diǎn)Q不與點(diǎn)C重合),請(qǐng)寫出所有滿足要求的點(diǎn)Q坐標(biāo)(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就學(xué)生體育活動(dòng)興趣愛好的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:

1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有   人,在扇形統(tǒng)計(jì)圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有   人喜歡籃球項(xiàng)目.

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加;@球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)平臺(tái)遠(yuǎn)處有一座古塔,小明在平臺(tái)底部的點(diǎn)C處測(cè)得古塔頂部B的仰角為60°,在平臺(tái)上的點(diǎn)E處測(cè)得古塔頂部的仰角為30°.已知平臺(tái)的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案