【題目】用一個直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽制作一個不倒翁玩具,不倒翁的軸截面如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽表面全涂上顏色,則涂色部分的面積為_____cm2.

【答案】;

【解析】

直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=185=13,由勾股定理得,AB=12,

∵BD×AO=AB×BO,BD=

圓錐底面半徑=BD=,圓錐底面周長=2×π,側(cè)面面積=×2×π×12=.

點睛: 利用勾股定理可求得圓錐的母線長,進而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側(cè)面積=底面周長×母線長÷2.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉(zhuǎn)化為數(shù)學問題求解是本題的解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果關于的分式方程有負分數(shù)解,且關于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示

1)請畫出△ABC關于y軸對稱的△ABC;(其中A、BC分別是A、BC的對應點,不寫畫法)

2)直接寫出ABC三點的坐標;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學課上,老師請同學思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問題,有如下思路:連接AC.

結合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題方法解決一下問題

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結論并證明;

②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形是由兩個小正方形和兩個小長方形組成的,根據(jù)圖形解答下列問題:

1)請用兩種不同的方法表示正方形的面積,并寫成一個等式;

2)運用(1)中的等式,解決以下問題:

①已知,,求的值;

②已知,,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠BAC30°,以AC為腰在其右側(cè)作ACD,使ADAC,連接BD,設∠CAD.若60°,CD2,

1)求BD的長.

2)設∠DBC,請你猜想的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個平臺遠處有一座古塔,小明在平臺底部的點C處測得古塔頂部B的仰角為60°,在平臺上的點E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文化用品商店用2400元購進一批學生書包,面市后發(fā)現(xiàn)供不應求,商店又購進第二批同樣的書包,所購數(shù)見是第一批購進數(shù)量的3倍,但單價貴了5元,結果購進第二批書包用了7800.

(1)求第一批購進書包的單價是多少元?

(2)若商店銷售這兩批書包時,每個售價都是100元,全部售出后,商店共盈利多少元?

查看答案和解析>>

同步練習冊答案