【題目】在如圖所示的正方形網格中,已知小正方形的邊長為1的頂點均為格點,邊交于點,下面有四個結論:①;②圖中陰影部分(即重疊部分)的面積為1.5;③為等邊三角形;④.其中結論正確的個數(shù)為(

A.1B.2C.3D.4

【答案】C

【解析】

利用勾股定理得出AB=DE,AC=DF再根據(jù)SSS判定,根據(jù)矩形和正方形的性質得出陰影部分的面積=1+0.5=1.5,根據(jù)矩形的對角線相等且互相平分得出為等腰三角形且AG=DG,即可得出答案

解:∵ EF=BC=3,由勾股定理得:AB=DE=2,AC=DE=

,正確

∵四邊形ADBE為正方形,四邊形ADCF為矩形

∴陰影部分的面積=,正確

∵四邊形ADCF為矩形,∴AG=GC=DG=FG=正確

為等腰三角形,錯誤

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著“互聯(lián)網+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:

時間(分鐘)

里程數(shù)(公里)

車費(元)

小明

8

8

12

小剛

12

10

16

(1)求x,y的值;

(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)請畫出△ABC關于y軸對稱的△A'B'C'(其中A',B',C'分別是A,B,C的對應點,不寫畫法).

(2)直接寫出A′B′,C'三點的坐標:A'_______,B'______,C'______;

(3)ABC的面積為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線軸交于點A,頂點為點B,點C與點A關于拋物線的對稱軸對稱.

1)求直線BC的解析式;

2)點D在拋物線上,且點D的橫坐標為4.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移)個單位后與直線BC只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在平面直角坐標系中,已知的三個頂點的坐標分別為,,.

1)將向上平移個單位長度,再向左平移個單位長度,得到,請畫出(點,,的對應點分別為,,

2)請畫出與關于軸對稱的(點,,的對應點分別為,,

3)請寫出,的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,BAC=90°,DBC的中點,EAD的中點.過點AAFBC交于BE的延長線于點F.

(1)求證:AEF≌△DEB;

(2)AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7AD=24,∠B=90°

1)判斷∠D是否是直角,并說明理由.

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國夢是中華民族每一個人的夢,也是每一個中小學生的夢,各中小學開展經典誦讀活動,無疑是中國夢教育這一宏大樂章里的響亮音符,學校在經典誦讀活動中,對全校學生用A、B、C、D四個等級進行評價,現(xiàn)從中抽取若干個學生進行調查,繪制出了兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

1)共抽取了多少個學生進行調查?

2)將圖甲中的折線統(tǒng)計圖補充完整.

3)求出圖乙中B等級所占圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經過點 A(1,1)和點 B(1,1),則 a 的取值范圍是______________.

查看答案和解析>>

同步練習冊答案