【題目】最近諸暨城市形象宣傳片《西施故里好美諸暨》正式發(fā)布,此篇歷時6個月拍攝,從不同角度向世界介紹了諸暨,現(xiàn)有一個不透明的口袋裝有分別標有漢字“好”、“美”、“諸”、“暨”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

1)若從中任取一個球,球上的漢字“美”的概率是多少.

2)甲從中任取一球,不放回,再從中任取一球,請用畫樹狀圖或列表的方法,求出甲取出的兩個球上的漢字恰能組成“諸暨”的概率P

【答案】1;(2

【解析】

1)直接根據(jù)概率公式計算可得;

2)先畫樹狀圖列出所有等可能結果,再從中找到符合條件的結果數(shù),再根據(jù)概率公式計算可得.

解:(1)從中任取一個球,球上的漢字的概率是;

2)畫樹狀圖如下:

由樹狀圖知,共有12種等可能結果,其中取出的兩個球上的漢字恰能組成諸暨的有2種結果,

所以取出的兩個球上的漢字恰能組成諸暨的概率

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是(  )

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB是直徑,過點A作直線MN,且∠MAC=∠ABC

1)求證:MN是⊙O的切線.

2)設D是弧AC的中點,連結BDAC于點G,過點DDEAB于點E,交AC于點F

①求證:FDFG

②若BC3,AB5,試求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自從湖南與歐洲的“湘歐快線”開通后,我省與歐洲各國經(jīng)貿(mào)往來日益頻繁某歐洲客商準備在湖南采購一批特色商品,經(jīng)調(diào)查16 000元采購A型商品的件數(shù)是用7 500元采購B型商品的件數(shù)的2,一件A型商品的進價比一件B型商品的進價多10

(1)求一件A,B型商品的進價分別為多少元?

(2)若該歐洲客商購進A,B型商品共250件進行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),且不小于80,已知A型商品的售價為240/,B型商品的售價為220/,且全部售出設購進A型商品m求該客商銷售這批商品的利潤vm之間的函數(shù)解析式,并寫出m的取值范圍;

(3)(2)的條件下,歐洲客商決定在試銷活動中每售出一件A型商品,就從一件A型商品的利潤中捐獻慈善資金a,求該客商售完所有商品并捐獻慈善資金后獲得的最大收益

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解班級學生數(shù)學課前預習的具體情況,鄭老師對本班部分學生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

1C類女生有   名,D類男生有   名,將上面條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中課前預習不達標對應的圓心角度數(shù)是   

3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學生中各隨機機抽取一位同學進行一幫一互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點AABx軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結BC

1)求該二次函數(shù)的解析式及點M的坐標;

2)若將該二次函數(shù)圖象向下平移個單位,使平移后得到的二次函數(shù)圖象的頂點與△ABC的外心重合,求的取值;

3)點P是坐標平面內(nèi)的一點,使得△ACB與△MCP,且CM的對應邊為AC,請寫出所有點P的坐標(直接寫出結果,不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,點P是等邊△ABC內(nèi)一點,已知PA3,PB4PC5,求∠APB的度數(shù).

要直接求∠A的度數(shù)顯然很因難,注意到條件中的三邊長恰好是一組勾股數(shù),因此考慮借助旋轉(zhuǎn)把這三邊集中到一個三角形內(nèi).

解:如圖2,作∠PAD60°使ADAP,連接PD,CD,則△PAD是等邊三角形.

   ADAP3,∠ADP=∠PAD60°

∵△ABC是等邊三角形

ACAB,∠BAC60°∴∠BAP   

∴△ABP≌△ACD

BPCD4   =∠ADC

∵在△PCD中,PD3PC5,CD4PD2+CD2PC2

∴∠PDC   °

∴∠APB=∠ADC=∠ADP+PDC60°+90°=150°

2)如圖3,在△ABC中,ABBC,∠ABC90°,點P是△ABC內(nèi)一點,PA1,PB2PC3,求∠APB的度數(shù).

3)拓展應用.如圖4,△ABC中,∠ABC30°,AB4,BC5P是△ABC內(nèi)部的任意一點,連接PA,PB,PC,則PA+PB+PC的最小值為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=3AC=4,BC=5,P為邊BC上一動點,PEABE,PFACFMEF中點,則AM的最小值為 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,城市建設部門計劃在城市廣場的一塊長方形空地上修建一個面積為1500的停車場,將停車場四周余下的空地修建成同樣寬的通道,已知長方形空地的長為60,寬為40

1)求通道的寬度;

2)某公司希望用60萬元的承包金額承攬修建廣場的工程,城建部門認為金額太高需要降價,通過兩次協(xié)商,最終以48.6萬元達成一致,若兩次降價的百分率相同,求每次降價的百分率.

查看答案和解析>>

同步練習冊答案