【題目】如圖,在銳角△ABC中,小明進行了如下的尺規(guī)作圖:
①分別以點A、B為圓心,以大于AB的長為半徑作弧,兩弧分別相交于點P、Q;
②作直線PQ分別交邊AB、BC于點E、D.
(1)小明所求作的直線DE是線段AB的 ;
(2)聯(lián)結(jié)AD,AD=7,sin∠DAC=,BC=9,求AC的長.
【答案】(1)線段AB的垂直平分線(或中垂線);(2)AC=5.
【解析】
(1)垂直平分線:經(jīng)過某一條線段的中點,并且垂直于這條線段的直線,叫做這條線段的垂直平分線
(2)根據(jù)題意垂直平分線定理可得AD=BD,得到CD=2,又因為已知sin∠DAC=,故可過點D作AC垂線,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC長.
(1)小明所求作的直線DE是線段AB的垂直平分線(或中垂線);
故答案為線段AB的垂直平分線(或中垂線);
(2)過點D作DF⊥AC,垂足為點F,如圖,
∵DE是線段AB的垂直平分線,
∴AD=BD=7
∴CD=BC﹣BD=2,
在Rt△ADF中,∵sin∠DAC=,
∴DF=1,
在Rt△ADF中,AF=,
在Rt△CDF中,CF=,
∴AC=AF+CF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點P在射線BC上(異于點B、C),直線AP與對角線BD及射線DC分別交于點F、Q.
(1)若BP=,求∠BAP的度數(shù);
(2)若點P在線段BC上,過點F作FG⊥CD,垂足為G,當(dāng)△FGC≌△QCP時,求PC的長;
(3)以PQ為直徑作⊙M.
①判斷FC和⊙M的位置關(guān)系,并說明理由;
②當(dāng)直線BD與⊙M相切時,直接寫出PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,y1),B(﹣3,y2),C(﹣5,y3)三個點都在反比例函數(shù)的圖象上,比較y1,y2,y3的大小,則下列各式正確的是( 。
A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】京杭大運河是世界文化遺產(chǎn).綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,∠DBA=60°,求該段運河的河寬(即CH的長).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AD、BD分別是△ABC的內(nèi)角∠BAC、∠ABC的平分線,過點A作AE⊥AD,交BD的延長線于點E.
(1)求證:∠E=∠C;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們研究過的圖形中,圓的任何一對平行切線的距離總是相等的,所以圓是“等寬曲線”.除了圓以外,還有一些幾何圖形也是“等寬曲線”,如勒洛三角形(如圖),它是分別以等邊三角形的每個頂點為圓心,以邊長為半徑,在另兩個頂點間畫一段圓弧,三段圓弧圍成的曲邊三角形. 圖是等寬的勒洛三角形和圓形滾木的截面圖.
圖 圖
有如下四個結(jié)論:
①勒洛三角形是中心對稱圖形
②圖中,點到上任意一點的距離都相等
③圖中,勒洛三角形的周長與圓的周長相等
④使用截面是勒洛三角形的滾木來搬運東西,會發(fā)生上下抖動
上述結(jié)論中,所有正確結(jié)論的序號是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.三角形的外心一定在三角形的外部B.三角形的內(nèi)心到三個頂點的距離相等
C.外心和內(nèi)心重合的三角形一定是等邊三角形D.直角三角形內(nèi)心到兩銳角頂點連線的夾角為125°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】孔明同學(xué)對本校學(xué)生會組織的“為貧困山區(qū)獻愛心”自愿捐款活動進行抽樣調(diào)查,得到了一組學(xué)生捐款情況的數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形的高度之比為3:4:5:10:8,又知此次調(diào)查中捐款30元的學(xué)生一共16人.
(1)孔明同學(xué)調(diào)查的這組學(xué)生共有_______人;
(2)這組數(shù)據(jù)的眾數(shù)是_____元,中位數(shù)是_____元;
(3)若該校有2000名學(xué)生,都進行了捐款,估計全校學(xué)生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a<0)的頂點M(1,﹣4a),且過點A(4,t),與x軸交于B、C兩點(點B在點C的左側(cè)),直線l經(jīng)過點A,B,交y軸交于點D.
(1)若a=﹣1,當(dāng)2≤x<4時,求y的范圍;
(2)若△MBC是等腰直角三角形,求△ABM的面積;
(3)點E是直線l上方的拋物線上的動點,△BDE的面積的最大值為;設(shè)P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A、B、P、Q為頂點的四邊形能否為矩形?若能,求出點P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com