【題目】孔明同學(xué)對本校學(xué)生會組織的“為貧困山區(qū)獻(xiàn)愛心”自愿捐款活動進行抽樣調(diào)查,得到了一組學(xué)生捐款情況的數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形的高度之比為345108,又知此次調(diào)查中捐款30元的學(xué)生一共16人.

1)孔明同學(xué)調(diào)查的這組學(xué)生共有_______人;

2)這組數(shù)據(jù)的眾數(shù)是_____元,中位數(shù)是_____元;

3)若該校有2000名學(xué)生,都進行了捐款,估計全校學(xué)生共捐款多少元?

【答案】160;(2)20,20;(338000

【解析】

(1)利用從左到右各長方形高度之比為3:4:5:10:8,可設(shè)捐5元、10元、15元、20元和30元的人數(shù)分別為3x、4x、5x、10x、8x,則根據(jù)題意得8x=16,解得x=2,然后計算3x+4x+5x++10x+8x即可;

(2)先確定各組的人數(shù),然后根據(jù)中位數(shù)和眾數(shù)的定義求解;

(3)先計算出樣本的加權(quán)平均數(shù),然后利用樣本平均數(shù)估計總體,用2000乘以樣本平均數(shù)即可.

(1)設(shè)捐5元、10元、15元、20元和30元的人數(shù)分別為3x、4x、5x、10x、8x,則8x=16,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);

(2)捐5元、10元、15元、20元和30元的人數(shù)分別為6,8,10,20,16.

∵20出現(xiàn)次數(shù)最多,∴眾數(shù)為20元;

∵共有60個數(shù)據(jù),第30個和第31個數(shù)據(jù)落在第四組內(nèi),∴中位數(shù)為20元;

(3)2000=38000(元),∴估算全校學(xué)生共捐款38000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(2,﹣3),且與x軸交點坐標(biāo)為(﹣1,0),(3,0)

(1)求拋物線的解析式;

(2)在直線AB下方拋物線上找一點D,求出使得△ABD面積最大時點D的坐標(biāo);

(3)M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點B的反比例函數(shù)圖象的表達(dá)式為(  )

A. y=﹣ B. y= C. y=﹣ D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)a>0)圖像與x軸交于點A、B(點A在點B的左側(cè)),與y軸的交于點C,頂點為D

1)求點A、B的坐標(biāo);

2)若M為對稱軸與x軸交點,且DM=2AM,

①求二次函數(shù)解析式;

②當(dāng)30°<∠ADM<45°時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1、圖2,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90°,

(1)在圖1中,ACBD相等嗎?請說明理由;

(2)若△COD繞點O順時針旋轉(zhuǎn)一定角度后,到達(dá)圖2的位置,請問ACBD還相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一組數(shù)據(jù)a,b,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a+2,b+2,c+2的平均數(shù)和方差分別是(  )

A.5,4B.4,5C.7,4D.7,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩點的坐標(biāo)分別為(―2,0,01),⊙C的圓心坐標(biāo)為(0,―1),半徑為1.若D是⊙C上的一個動點,射線ADy軸交于點E,則△ABE面積的最大值是( )

A. 4 B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

1)如圖1,在RtABC中,ABC=90°,以點B為中心,把ABC逆時針旋轉(zhuǎn)90°,得到A1BC1;再以點C為中心,把ABC順時針旋轉(zhuǎn)90°,得到A2B1C,連接C1B1,則C1B1BC的位置關(guān)系為_______;

2)如圖2,當(dāng)ABC是銳角三角形,ABC=αα≠60°)時,將ABC按照(1)中的方式旋轉(zhuǎn)α,連接C1B1,探究C1B1BC的位置關(guān)系,寫出你的探究結(jié)論,并加以證明;

3)如圖3,在圖2的基礎(chǔ)上,連接B1B,若C1B1=BC,C1BB1的面積為4,則B1BC的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣51),B(﹣22),C(﹣1,4),請按下列要求畫圖:

1)將△ABC先向右平移4個單位長度、再向下平移1個單位長度,得到△A1B1C1,畫出△A1B1C1;

2)畫出與△ABC關(guān)于原點O成中心對稱的△A2B2C2,并直接寫出點A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案