【題目】中國的數字支付正在引領未來世界的支付方式變革.某校數學興趣小組設計了一份調查問卷,要求每人選且只選一種你最喜歡的支付方式.現將調查結果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次活動共調查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數為 ;
(2)將條形統(tǒng)計圖補充完整.觀察此圖,將各種支付方式調查人數組成一組數據,求這組數據的“中位數”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表的方法,求兩人選同種支付方式的概率.
【答案】(1)100人,72°;(2)見解析;(3).
【解析】
(1)用支付寶、現金及其他的人數和除以這三者的百分比之和可得總人數,再用360°乘以“支付寶”人數所占比例即可得;
(2)用總人數乘以對應百分比可得微信、銀行卡的人數,從而補全圖形,再根據中位數的定義求解可得;
(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩人恰好選擇同一種支付方式的情況,再利用概率公式即可求得答案.
解:(1)用支付寶、現金及其他的人數和為:20+25+10=55(人),
用支付寶、現金及其他的人數所占百分比為:1-15%-30%=55%,
∴本次活動調查的總人數為55÷55%=100人,
則表示“支付寶”支付的扇形圓心角的度數為360°×=72°,
故答案為:100,72°;
(2)銀行卡人數為:100×15%=15(人),
微信人數為:100×30%=30(人),
補全圖形如下:
將各種支付方式調查人數組成一組數據,從小到大排列為:10,15,20,25,30,
則中位數為20;
(3)將微信記為A、支付寶記為B、銀行卡記為C,畫樹狀圖得:
,
∵由樹狀圖知,共有9種等可能的結果,其中兩人選用同一種支付方式的有3種,
∴P(兩人選用同種支付方式)=.
科目:初中數學 來源: 題型:
【題目】王芳同學到文具店購買中性筆和筆記本,中性筆每支1元,筆記本每本3元,王芳同學現有10元錢,則可供她選擇的購買方案的個數為(兩樣都買,余下的錢少于1元)( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】人字折疊梯完全打開后如圖1所示,B,C是折疊梯的兩個著地點,D是折疊梯最高級踏板的固定點.圖2是它的示意圖,AB=AC,BD=140cm,∠BAC=40°,求點D離地面的高度DE.(結果精確到0.1cm;參考數據sin70°≈0. 94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售A,B兩款保溫杯,已知B款保溫杯的銷售單價比A款保溫杯多10元,用480元購買B款保溫杯的數量與用360元購買A款保溫杯的數量相同.
(1)A,B兩款保溫杯的銷售單價各是多少元?
(2)由于需求量大,A,B兩款保溫杯很快售完,該超市計劃再次購進這兩款保溫杯共120個,且A款保溫杯的數量不少于B保溫杯的2倍,A保溫杯的售價不變,B款保溫杯的銷售單價降低10%,兩款保溫杯的進價每個均為20元,應如何進貨才能使這批保溫杯的銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正確結論的個數是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2020年3月,我國湖北省A、B兩市遭受嚴重新冠肺炎影響,鄰近縣市C、D獲知A、B兩市分別急需救災物資200噸和300噸的消息后,決定調運物資支援災區(qū).已知C市有救災物資240噸,D市有救災物資260噸,現將這些救災物資全部調往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用分別為每噸15元和30元,設從D市運往B市的救災物資為x噸.
(1)設C、D兩市的總運費為w元,求w與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)經過當地政府的大力支持,從D市到B市的運輸時間縮短了,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的邊AC為直徑的⊙O恰為△ABC的外接圓,∠ABC的平分線交⊙O于點D,過點D作DE∥AC交BC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若AB=25,BC=,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數與反比例函數的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數的解析式;
(2)求的面積;
(3)根據圖象直接寫出的x的取值范圍
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com