【題目】如圖,四邊形ABCD是矩形,點(diǎn)P是△ABD的內(nèi)切圓的圓心,過(guò)P作PE⊥BC,PF⊥CD,垂足分別為點(diǎn)E、F,則四邊形PECF和矩形ABCD的面積之比等于( )
A.1:2B.2:3C.3:4D.無(wú)法確定
【答案】A
【解析】
延長(zhǎng)EP交AD于M,延長(zhǎng)FP交AB于N,設(shè)AD=a,AB=b,BD=c,⊙P的半徑為r,利用平行線的性質(zhì)得到PM⊥AD,PN⊥AB,再根據(jù)切線長(zhǎng)定理得到PM=PN=r,根據(jù)直角三角形的內(nèi)切圓半徑的計(jì)算方法得到r=,所以PEPF=
,利用完全平方公式和平方差公式得到PEPF=ab,然后計(jì)算四邊形PECF和矩形ABCD的面積之比.
解:延長(zhǎng)EP交AD于M,延長(zhǎng)FP交AB于N,如圖,設(shè)AD=a,AB=b,BD=c,⊙P的半徑為r,
∵四邊形ABCD是矩形,
∴AD∥BC,AB∥CD,
∵PE⊥BC,PF⊥CD,
∴PM⊥AD,PN⊥AB,
∵點(diǎn)P是△ABD的內(nèi)切圓的圓心
∴PM=PN=r,
∴r=,
∴PF=a﹣=,PE=b﹣=,
∴PEPF=
==,
而a2+b2=c2,
∴PEPF==ab,
∴四邊形PECF和矩形ABCD的面積之比=ab:ab=1:2.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是正方形ABCD邊上一點(diǎn),以O為圓心,OB為半徑畫(huà)圓與AD交于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交CD于F,將△DEF沿EF對(duì)折,點(diǎn)D的對(duì)稱點(diǎn)D'恰好落在⊙O上.若AB=6,則OB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)為,(正方形網(wǎng)格中,每個(gè)小正方形邊長(zhǎng)為1個(gè)單位長(zhǎng)度).
(1)畫(huà)出向下平移4個(gè)單位得到的;
(2)以B為位似中心,在網(wǎng)格中畫(huà)出,使與位似,且位似比,直接寫(xiě)出點(diǎn)坐標(biāo)是_____________________;
(3)的面積是______________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),P是A'B'的中點(diǎn),連接PM.若BC=2,∠BAC=30°,則線段PM的最大值是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E是AD邊上一點(diǎn),連接CE,交對(duì)角線BD于點(diǎn)F,過(guò)點(diǎn)A作AB的垂線交BD的延長(zhǎng)線于點(diǎn)G,過(guò)B作BH垂直于CE,垂足為點(diǎn)H,交CD于點(diǎn)P,2∠1+∠2=90°.
(1)若PH=2,BH=4,求PC的長(zhǎng);
(2)若BC=FC,求證:GF=PC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】)甲乙兩人在相同條件下完成了5次射擊訓(xùn)練,兩人的成績(jī)?nèi)鐖D所示.
(1)甲射擊成績(jī)的眾數(shù)為 環(huán),乙射擊成績(jī)的中位數(shù)為 環(huán);
(2)計(jì)算兩人射擊成績(jī)的方差;
(3)根據(jù)訓(xùn)練成績(jī),你認(rèn)為選派哪一名隊(duì)員參賽更好,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對(duì)的圓心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則圓心A到弦BC的距離等于( 。
A.B.C.4D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門(mén)前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線.
已知:CB⊥AD,ED⊥AD,測(cè)得BC=1m,DE=1.5m,BD=8.5m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=60°,P為它的內(nèi)部一點(diǎn),M為射線OA上一點(diǎn),連接PM,以P為中心,將線段PM順時(shí)針旋轉(zhuǎn)120°,得到線段PN,并且點(diǎn)N恰好落在射線OB上.
(1)依題意補(bǔ)全圖1;
(2)證明:點(diǎn)P一定落在∠AOB的平分線上;
(3)連接OP,如果OP=2,判斷OM+ON的值是否變化,若發(fā)生變化,請(qǐng)求出值的變化范圍,若不變,請(qǐng)求出值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com