【題目】)甲乙兩人在相同條件下完成了5次射擊訓(xùn)練,兩人的成績?nèi)鐖D所示.

1)甲射擊成績的眾數(shù)為 環(huán),乙射擊成績的中位數(shù)為 環(huán);

2)計(jì)算兩人射擊成績的方差;

3)根據(jù)訓(xùn)練成績,你認(rèn)為選派哪一名隊(duì)員參賽更好,為什么?

【答案】1)① 78 8;(2甲的方差為1.4;乙的方差為0.4;(3)選擇乙參賽

【解析】

1)依據(jù)眾數(shù)、中位數(shù)的計(jì)算公式,即可得到結(jié)果;

2)根據(jù)方差的計(jì)算公式進(jìn)行計(jì)算;

3)依據(jù)甲乙兩人平均成績一樣,甲射擊成績的方差小于乙,即可得出甲的成績更加穩(wěn)定,所以選擇甲去參賽.

1)① 甲5次射擊成績中有兩次7環(huán),兩次8環(huán),一次10環(huán),所以甲的射擊成績的眾數(shù)為78 ②乙的五次射擊成績從小到大排列為7環(huán),8環(huán),8環(huán),8環(huán),9環(huán),所以乙射擊成績的中位數(shù)為8

2)甲射擊成績的平均數(shù)為: ,

乙射擊成績的平均數(shù)為: =8

S2= 1.2,

S2= =0.4

3)解:∵甲乙二人平均成績相等,且乙的方差小于甲的方差,

∴選乙參賽更好,因?yàn)閮扇说钠骄煽兿嗤,但乙的方差較小,說明乙的成績更穩(wěn)定,所以選擇乙參賽.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二次函數(shù),下列說法錯誤的是(

A.當(dāng)時(shí),的增大而減小B.它的圖象與軸有交點(diǎn)

C.當(dāng)時(shí),D.它的圖象與軸交于點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,已知 ADAB.在邊AD上取點(diǎn)E,連結(jié)CE.過點(diǎn)EEFCE,與邊AB的延長線交于點(diǎn)F

1)證明:AEF∽△DCE.

2)若AB=3,AE =4,AD=10,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)PABD的內(nèi)切圓的圓心,過PPEBC,PFCD,垂足分別為點(diǎn)EF,則四邊形PECF和矩形ABCD的面積之比等于( 。

A.12B.23C.34D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以斜邊上的中線為直徑作,與、分別交于點(diǎn),與的另一個交點(diǎn)為.過點(diǎn),垂足為.

1)求證:的切線;

2)若,,求弦的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C,D是⊙O上的點(diǎn),OCBD,交AD于點(diǎn)E,連結(jié)BC

1)求證:AE=ED;

2)若AB=8,∠CBD=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣21),B1n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,D,E分別是△ABC兩邊的中點(diǎn),如果弧DE(可以是劣弧、優(yōu)弧或半圓)上的所有點(diǎn)都在△ABC的內(nèi)部或邊上,則稱弧DE為△ABC的中內(nèi)。纾瑘D1中弧DE是△ABC其中的某一條中內(nèi)。

1)如圖2,在邊長為4的等邊△ABC中,DE分別是AB,AC的中點(diǎn).畫出△ABC的最長的中內(nèi)弧DE,并直接寫出此時(shí)弧DE的長;

2)在平面直角坐標(biāo)系中,已知點(diǎn)A2,6),B0,0),Ct,0),在△ABC中,DE分別是AB,AC的中點(diǎn).

t2,求△ABC的中內(nèi)弧DE所在圓的圓心P的縱坐標(biāo)的取值范圍;

請寫出一個t的值,使得△ABC的中內(nèi)弧DE所在圓的圓心P的縱坐標(biāo)可以取全體實(shí)數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案