【題目】如圖,在矩形ABCD中,已知 AD>AB.在邊AD上取點(diǎn)E,連結(jié)CE.過點(diǎn)E作EF⊥CE,與邊AB的延長線交于點(diǎn)F.
(1)證明:△AEF∽△DCE.
(2)若AB=3,AE =4,AD=10,求線段BF的長.
【答案】(1)見解析;(2)BF=5.
【解析】
(1)根據(jù)矩形的性質(zhì)可得出∠A=D=90°,由CE⊥EF可得出∠AEF+∠DEC=90°,結(jié)合∠F+∠AEF=90°可得出∠F=∠DEC,進(jìn)而可證出△AEF∽△DCE;
(2)根據(jù)矩形的性質(zhì)可得出DC的長度,由AE、AD的長度可得出DE的長度,根據(jù)相似三角形的性質(zhì)可得,代入數(shù)據(jù)求出AF,即可得到BF的長度.
(1)證明:∵四邊形ABCD為矩形,
∴∠A=D=90°,
∵CE⊥EF,
∴∠AEF+∠DEC=90°,
又∵∠F+∠AEF=90°,
∴∠F=∠DEC,
∴△AEF∽△DCE;
(2)解:∵四邊形ABCD為矩形,
∴DC=AB=3,
∵AE=4,AD=10,
∴DE=ADAE=6,
∵△AEF∽△DCE,
∴,即,
∴AF=8,
∴BF=AF-AB=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AC=CB,點(diǎn)E,F分別是AC,BC上的點(diǎn),△CEF的外接圓交AB于點(diǎn)Q,D.
(1)如圖1,若點(diǎn)D為AB的中點(diǎn),求證:∠DEF=∠B;
(2)在(1)問的條件下:
①如圖2,連結(jié)CD,交EF于H,AC=4,若△EHD為等腰三角形,求CF的長度.
②如圖2,△AED與△ECF的面積之比是3:4,且ED=3,求△CED與△ECF的面積之比(直接寫出答案).
(3)如圖3,連接CQ,CD,若AE+BF=EF,求證:∠QCD=45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一圓弧形橋拱的圓心為,拱橋的水面跨度米,橋拱到水面的最大高度為米.求:
橋拱的半徑;
現(xiàn)水面上漲后水面跨度為米,求水面上漲的高度為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)為,(正方形網(wǎng)格中,每個(gè)小正方形邊長為1個(gè)單位長度).
(1)畫出向下平移4個(gè)單位得到的;
(2)以B為位似中心,在網(wǎng)格中畫出,使與位似,且位似比,直接寫出點(diǎn)坐標(biāo)是_____________________;
(3)的面積是______________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的表達(dá)式為,線段AB的兩個(gè)端點(diǎn)分別為A(1,2),B(3,2)
(1)若拋物線經(jīng)過原點(diǎn),求出的值;
(2)求拋物線頂點(diǎn)C的坐標(biāo)(用含有m的代數(shù)式表示);
(3)若拋物線與線段AB恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),P是A'B'的中點(diǎn),連接PM.若BC=2,∠BAC=30°,則線段PM的最大值是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】)甲乙兩人在相同條件下完成了5次射擊訓(xùn)練,兩人的成績?nèi)鐖D所示.
(1)甲射擊成績的眾數(shù)為 環(huán),乙射擊成績的中位數(shù)為 環(huán);
(2)計(jì)算兩人射擊成績的方差;
(3)根據(jù)訓(xùn)練成績,你認(rèn)為選派哪一名隊(duì)員參賽更好,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為2,M、N分別為邊BC、CD上的動(dòng)點(diǎn),且∠MAN=45°
(1)猜想線段BM、DN、MN的數(shù)量關(guān)系并證明;
(2)若BM=CM,P是MN的中點(diǎn),求AP的長;
(3)M、N運(yùn)動(dòng)過程中,請直接寫出△AMN面積的最大值 和最小值 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com