【題目】ABC內(nèi)接于OATO于點(diǎn)A,ABBC,且ATBC

1)如圖1,求證:△ABC是等邊三角形;

2)如圖2,點(diǎn)M在射線AT上,連接CMO于點(diǎn)D,連接BDAC于點(diǎn)E,AFCMBC于點(diǎn)F,求證:AECF;

3)如圖3,在(2)的條件下,延長BA、CM交于點(diǎn)G,若BD40,CD25,求AG的長.

【答案】(1)詳見解析;(2)詳見解析;(3)21

【解析】

1)連接AO,延長AOBCD,如圖1,利用切線的性質(zhì)得OABC,則ADBC,利用垂徑定理可判斷AD垂直平分BC,所以ABAC,然后根據(jù)等邊三角形的定義可得到結(jié)論;

2)如圖2,先利用等邊三角形的性質(zhì)得∠ABC=∠BAC=∠ACB60°,再∠1=∠3,然后利用ASA可證明ABE≌△CAF,從而得到AECF;

3)作CHBDH,如圖3,利用圓周角得到∠BDC=∠BAC60°,利用含30度的直角三角形三邊的關(guān)系可計(jì)算出DH,CH,則BH,再利用勾股定理計(jì)算出BC35,接著證明△GAM∽△GBC,利用相似比得到AM,證明GAM∽△BDC,利用相似比得到AMAG,所以AG,然后解方程可得到AG的長.

1)證明:連接AO,延長AOBCD,如圖1,

AT切⊙O于點(diǎn)A,

OABC,

ATBC,

ADBC,

BDCD

AD垂直平分BC,

ABAC,

ABBC,

ABBCAC,

∴△ABC是等邊三角形;

2)證明:如圖2,

∵△ABC是等邊三角形,

∴∠ABC=∠BAC=∠ACB60°,

AFCM,

∴∠1=∠2,

而∠2=∠3,

∴∠1=∠3,

ABECAF

,

∴△ABE≌△CAF,

AECF;

3)解:作CHBDH,如圖3,

∵∠BDC=∠BAC60°,

DHCD,

CHDH,BHBDDH40,

RtBCH中,BC35,

AMBC,

∴△GAM∽△GBC,

,即

AM,

AMBC,

∴∠GAM=∠ABC60°,∠GMA=∠GCB,

∴∠BDC=∠GAM,∠DCB=∠GMA,

∴△GAM∽△BDC,

,即,

AMAG,

AG,

AG21

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了編撰祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會(huì)”,小明和小麗同時(shí)參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個(gè)字組成一句唐詩,其答案為“山重水復(fù)疑無路”.

(1)小明回答該問題時(shí),對第二個(gè)字是選“重”還是選“窮”難以抉擇,若隨機(jī)選擇其中一個(gè),則小明回答正確的概率是

(2)小麗回答該問題時(shí),對第二個(gè)字是選“重”還是選“窮”、第四個(gè)字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機(jī)選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為正六邊形ABCDEF的中心,點(diǎn)MAF中點(diǎn),以點(diǎn)O為圓心,以OM的長為半徑畫弧得到扇形MON,點(diǎn)NBC上;以點(diǎn)E為圓心,以DE的長為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對垃圾進(jìn)行分類投放,能有效提高對垃圾的處理和再利用,減少污染,保護(hù)環(huán)境.為了調(diào)查同學(xué)們對垃圾分類知識(shí)的了解程度,增強(qiáng)同學(xué)們的環(huán)保意識(shí),普及垃圾分類及投放的相關(guān)知識(shí),某校數(shù)學(xué)興趣小組的同學(xué)設(shè)計(jì)了垃圾分類知識(shí)及投放情況問卷,并在本校隨機(jī)抽取部分同學(xué)進(jìn)行問卷測試,把測試成績分成優(yōu)、良、中、差四個(gè)等級,繪制了如下不完整的統(tǒng)計(jì)圖:

根據(jù)以上統(tǒng)計(jì)信息,解答下列問題:

1)求成績是優(yōu)的人數(shù)占抽取人數(shù)的百分比;

2)求本次隨機(jī)抽取問卷測試的人數(shù);

3)請把條形統(tǒng)計(jì)圖補(bǔ)充完整;

4)若該校學(xué)生人數(shù)為3000人,請估計(jì)成績是優(yōu)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Q為正方形ABCD外一點(diǎn),連接BQ,過點(diǎn)DDQBQ,垂足為QG、K分別為AB、BC上的點(diǎn),連接AK、DG,分別交BQF、E,AKDG,垂足為點(diǎn)H,AF5,DH8,FBQ中點(diǎn),M為對角線BD的中點(diǎn),連接HM并延長交正方形于點(diǎn)N,則HN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線,直線與雙曲線交于點(diǎn),將直線向下平移與雙曲線交于點(diǎn),與軸交于點(diǎn),與雙曲線交于點(diǎn),,,,則的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)落在處,折痕為,若,,則線段的長度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像如圖所示,對稱軸為直線,則下列結(jié)論正確的有(

;②方程的兩個(gè)根是,;

;④當(dāng)時(shí),的增大而減。

A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐵嶺市某商貿(mào)公司以每千克40元的價(jià)格購進(jìn)一種干果,計(jì)劃以每千克60元的價(jià)格銷售,為了讓顧客得到更大的實(shí)惠,現(xiàn)決定降價(jià)銷售,已知這種干果銷售量y(千克)與每千克降價(jià)x()(0x20)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:

(1)yx之間的函數(shù)關(guān)系式;

(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價(jià)多少元?

(3)該干果每千克降價(jià)多少元時(shí),商貿(mào)公司獲利最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案