【題目】如圖,在邊長為10的菱形ABCD中,對角線BD =16. 點E是AB的中點,P、Q是BD上的動點,且始終保持PQ =2, 則四邊形AEPQ周長的最小值為_________.(結(jié)果保留根號)
【答案】7+
【解析】
試題將菱形ABCD放置在平面直角坐標(biāo)系中,使得B為原點,BD在x的正半軸上,根據(jù)題意得出A、B、E三點的坐標(biāo),將A平行向左移動2個單位到A'點,作A'關(guān)于x軸的對稱點F,則F(6,-6),連EF,交x軸于點P,在x軸上向正方向上截取PQ=2,此時四邊形AEPQ的周長最小,AQ+EP=A'P+EP=FP+EP=EF,由此即可得出結(jié)論.
試題解析:如圖所示:
將菱形ABCD放置在平面直角坐標(biāo)系中,使得B為原點,BD在x的正半軸上,
∵菱形ABCD的邊長是10,對角線BD=16,點E是AB的中點,
∴A(8,6),B(0,0),E(4,3),將A平行向左移動2個單位到A'點,則A'(6,6),作A'關(guān)于x軸的對稱點F,則F(6,-6),連EF,交x軸于點P,在x軸上向正方向上截取PQ=2,
此時,四邊形AEPQ的周長最小,
∵AE==5,PQ=2,AQ+EP=A′P+EP=FP+EP=EF,
∴四邊形四邊形AEPQ的周長=5+2+=7+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE⊥AB.
(1)若∠BOC=4∠AOC,求∠BOD的度數(shù);
(2)若∠1=∠2,問OF⊥CD嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質(zhì)量問題倍受人們關(guān)注.某商場計劃購進(jìn)一批、兩種空氣凈化裝置,每臺種設(shè)備價格比每臺種設(shè)備價格多0.7萬元,花3萬元購買種設(shè)備和花7.2萬元購買種設(shè)備的數(shù)量相同.
(1)求種、種設(shè)備每臺各多少萬元?
(2)根據(jù)銷售情況,需購進(jìn)、兩種設(shè)備共20臺,總費(fèi)用不高于15萬元,求種設(shè)備至少要購買多少臺?
(3)若每臺種設(shè)備售價0.6萬元,每臺種設(shè)備售價1.4萬元,在(2)的情況下商場應(yīng)如何進(jìn)貨才能使這批空氣凈化裝置售完后獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格圖中,我們稱每個小正方形的頂點為“格點”,以格點為頂點的三角形叫做“格點三角形”,根據(jù)圖形,回答下列問題.
(1)圖中格點三角形A′B′C′是由格點三角形ABC通過怎樣的平移得到的?
(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點A的坐標(biāo)為(-3,4),請寫出格點三角形DEF各頂點的坐標(biāo),并求出三角形DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).
(1)請畫出將△ABC向下平移5個單位后得到的△A1B1C1;
(2)將△ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點A旋轉(zhuǎn)到點A2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=16 km,CB=11 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點A(﹣3,0)和點B(2,0).直線(為常數(shù),且)與BC交于點D,與軸交于點E,與AC交于點F.
(1)求拋物線的解析式;
(2)連接AE,求為何值時,△AEF的面積最大;
(3)已知一定點M(﹣2,0).問:是否存在這樣的直線,使△BDM是等腰三角形?若存在,請求出的值和點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點D是AB邊上的一點,DM⊥AB,且DM=AC,過點M作ME∥BC交AB于點E,
(1)試說明△ABC與△MED全等;
(2)若∠M=35°,求∠B的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級380名師生秋游,計劃租用7輛客車,現(xiàn)有甲、乙兩種型號客車,它們的載客量和租金如表.
甲種客車 | 乙種客車 | |
載客量(座/輛) | 60 | 45 |
租金(元/輛) | 550 | 450 |
(1)設(shè)租用甲種客車x輛,租車總費(fèi)用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;
(2)當(dāng)甲種客車有多少輛時,能保障所有的師生能參加秋游且租車費(fèi)用最少,最少費(fèi)用是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com