【題目】某校為了預測九年級男生排球30對墻墊球的情況,從本校九年級隨機抽取了n名男生進行該項目測試,并繪制出如下的頻數(shù)分布直方圖,其中從左到右依次分為七個組(每組含最小值,不含最大值).根據(jù)統(tǒng)計圖提供的信息解答下列問題:

1)求n的值.

2)這個樣本數(shù)據(jù)的中位數(shù)落在第幾組?

3)若測試九年級男生排球30對墻墊球個數(shù)不低于10個為合格,根據(jù)統(tǒng)計結果,估計該校九年級450名男同學成績合格的人數(shù).

【答案】1502)三(3)該校九年級450名男同學成績合格人數(shù)約為414

【解析】

(1)將所有小組的頻數(shù)相加即可求得n的值;
(2)根據(jù)確定的n的值和中位數(shù)的定義確定答案即可;
(3)用總人數(shù)乘以成績合格的頻率即可求得的答案.

1n=1+2+4+5+10+12+16=50;

2)共50人,中位數(shù)應該是第25和第26人的平均數(shù),

因為整兩個人均落在第三小組,

所以這個樣本數(shù)據(jù)的中位數(shù)應該落在第三小組;

故答案為:三.

3450×=414()

故該校九年級450名男同學成績合格人數(shù)約為414人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】正方形、、、…按如圖所示的方式放置.、、、…和點、、…分別在直線軸上,則點的坐標是__________.(為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】剪紙是中國傳統(tǒng)的民間藝術,它畫面精美,風格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為金魚,另外一張卡片的正面圖案為蝴蝶,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是金魚的概率.(圖案為金魚的兩張卡片分別記為A1、A2,圖案為蝴蝶的卡片記為B)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內的一點,且PA6PB8,PC10

1)尺規(guī)作圖:作出將△PAC繞點A逆時針旋轉60°后所得到的△PAB(不要求寫作法,但需保留作圖痕跡).

2)求點P與點P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某大學畢業(yè)生響應國家自主創(chuàng)業(yè)的號召,投資開辦了一個裝飾品商店,某種商品每件的進價為20元,現(xiàn)在售價為每件40元,每周可賣出150件,市場調查發(fā)現(xiàn):如果每件的售價每降價1元(售價不低于20元),那么每周多賣出25件,設每件商品降價元,每周的利潤為元.

(1)請寫出利潤與售價之間的函數(shù)關系式.

(2)當售價為多少元時,利潤可達4000元?

(3)應如何定價才能使利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)和反比例函數(shù)

1)如圖1,若,且函數(shù)、的圖象都經過點

①求,的值;

②直接寫出當的范圍;

2)如圖2,過點軸的平行線與函數(shù)的圖象相交于點,與反比例函數(shù)的圖象相交于點

①若,直線與函數(shù)的圖象相交點.當點、、中的一點到另外兩點的距離相等時,求的值;

②過點軸的平行線與函數(shù)的圖象相交于點.當的值取不大于1的任意實數(shù)時,點間的距離與點、間的距離之和始終是一個定值.求此時的值及定值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋里裝有分別標有漢字、、的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

(1)若從中任取一個球,求摸出球上的漢字剛好是的概率;

(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成美麗光明的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若m是正數(shù),直線ly=-my軸交于點A;直線ayx+my軸交于點B;拋物線Ly x2+mx的頂點為C,且Lx軸左交點為D

1)若AB12,求m的值,此時在拋物線的對稱軸上存在一點P使得△的周長最小,求點P坐標;

2)當點C在直線l上方時,求點C與直線l距離的最大值;

3)在拋物線L和直線a所圍成的封閉圖形的邊界上,把橫、縱坐標都是整數(shù)的點稱為美點,分別直接寫出m2020m2020.5美點的個數(shù).

查看答案和解析>>

同步練習冊答案