【題目】已知拋物線:=(為任意實(shí)數(shù))
(1)無(wú)論取何值,拋物線恒過(guò)兩點(diǎn)________,________.
(2)當(dāng)時(shí),設(shè)拋物線在第一象限依次經(jīng)過(guò)整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))為,….將拋物線沿直線平移,平移后的拋物線記為,拋物線經(jīng)過(guò)點(diǎn),的頂點(diǎn)為(,例如時(shí),拋物線經(jīng)過(guò)點(diǎn),頂點(diǎn)為)
①拋物線的解析式為________;頂點(diǎn)坐標(biāo)為________;
②在拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo),并判斷四邊形的形狀;若不存在,請(qǐng)說(shuō)明理由.
③直接寫(xiě)出線段的長(zhǎng)________.
【答案】(1),;(2)①,;②存在,點(diǎn)坐標(biāo)為;是矩形;③
【解析】
(1)由拋物線C的解析式,令的系數(shù)為0,得出的值,進(jìn)而求出拋物線恒過(guò)的點(diǎn)的坐標(biāo);
(2)①當(dāng)時(shí),拋物線C可化簡(jiǎn)為,根據(jù)題意,格點(diǎn)(2,4),根據(jù)拋物線平移的性質(zhì),可設(shè)平移后的拋物線為(m>0),將(2,4)代入,即可得解;
②用待定系數(shù)法求出拋物線和直線解析式,假設(shè)存在點(diǎn),使得,求出直線,聯(lián)立直線和拋物線,即可求出P點(diǎn)坐標(biāo);根據(jù)兩點(diǎn)間距離公式求出和,再結(jié)合勾股定理逆定理求出∠=90°,即可判定四邊形為矩形;
③由題意可設(shè),將其代入平移后的拋物線(m>0),求出m=2n-1,于是,同理得出,由兩點(diǎn)間距離公式即可得解.
(1)=
令,
解得或
將代入拋物線C的解析式,得,
將代入拋物線C的解析式,得,
∴無(wú)論取何值,拋物線恒過(guò)兩點(diǎn),,
故答案為,;
(2)①當(dāng)時(shí),拋物線C:,
根據(jù)題意,A1(1,1),A2(2,4),
設(shè)平移后的拋物線為(m>0),
代入A2(2,4),得拋物線C2:
解得,m=0(舍)或m=3
∴拋物線的解析式為,頂點(diǎn)坐標(biāo)為(3,3).
故答案為:,;
②將A1(1,1)代入(m>0),
得
解得,m=0(舍)或m=1
∴拋物線:,頂點(diǎn)坐標(biāo)
設(shè)直線的解析式為:
分別將A2(2,4)和M2(3,3)代入得
,解得
∴直線:
假設(shè)存在點(diǎn),使得,
設(shè)直線為,
將代入得,解得:t=2,
所以直線:
聯(lián)立,
解得或(此點(diǎn)為M1)
∴存在點(diǎn),使得,點(diǎn)坐標(biāo)為;
∵,,
∴=,
又,
∴四邊形是平行四邊形,
又∵,,,
∴
∴∠=90°,
∴四邊形是矩形;
③設(shè),將其代入平移后的拋物線(m>0),
解得m=2n-1,于是,
同理可得:,
∴,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動(dòng)點(diǎn)M、N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,MN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),ΔMCN面積為2cm?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c是常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表所示,則下列結(jié)論中,正確的個(gè)數(shù)有( )
x | -7 | -6 | -5 | -4 | -3 | -2 |
y | -27 | -13 | -3 | 3 | 5 | 3 |
①當(dāng)x<-4時(shí),y<3②當(dāng)x=1時(shí),y的值為-13;③-2是方程ax2+(b-2)x+c-7=0的一個(gè)根;④方程ax2+bx+c=6有兩個(gè)不相等的實(shí)數(shù)根.
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,交AC于點(diǎn)E,交AB于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若BD=,BF=2,求陰影部分的面積 (直接填空).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著互聯(lián)網(wǎng)的高速發(fā)展,人們的支付方式發(fā)生了巨大改變,某學(xué)習(xí)小組抽樣調(diào)查了春節(jié)期間某商場(chǎng)顧客的支付方式,主要有現(xiàn)金支付、銀聯(lián)卡支付和手機(jī)支付,調(diào)查得知使用這三種支付的人數(shù)比為,手機(jī)支付已成為市民購(gòu)物便捷支付方式.手機(jī)支付主要有以下三種方式:~支付寶,~微信,~其他.現(xiàn)將使用手機(jī)支付方式人數(shù)的調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
(1)扇形統(tǒng)計(jì)圖中,________;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該商場(chǎng)春節(jié)期間共20000人購(gòu)物,請(qǐng)估計(jì)用支付寶進(jìn)行支付的人數(shù).
(3)經(jīng)調(diào)查某天顧客現(xiàn)金支付、銀聯(lián)卡支付、手機(jī)支付每筆交易發(fā)生的平均金額分別為120元、260元、80元,求這天顧客每筆交易的平均金額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)今社會(huì)人們?cè)絹?lái)越離不開(kāi)網(wǎng)絡(luò),電腦、手機(jī)被普遍使用,與此同時(shí)人們的視力也大大受到影響,2019年初某企業(yè)以25萬(wàn)元購(gòu)得某項(xiàng)護(hù)目鏡生產(chǎn)技術(shù)后,再投人100萬(wàn)元購(gòu)買(mǎi)生產(chǎn)設(shè)備,進(jìn)行該護(hù)目鏡的生產(chǎn)加工,已知生產(chǎn)這種護(hù)目鏡的成本價(jià)為每件20元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn)該產(chǎn)品的銷(xiāo)售單價(jià)定在元比較合理,并且該產(chǎn)品的年銷(xiāo)售量(萬(wàn)件)與銷(xiāo)售單價(jià) (元)之間的函數(shù)關(guān)系式為.(年獲利=年銷(xiāo)售收入-生產(chǎn)成本-投資成本)
(1)求該公司第一年的年獲利(萬(wàn)元)與銷(xiāo)售單價(jià)(元)之間的函數(shù)關(guān)系式,并說(shuō)明投資的第一年,該公司是盈利還是虧損?若盈利,最大利潤(rùn)是多少?若虧損,最小虧損是多少?
(2)2020年初我國(guó)爆發(fā)新冠肺炎,該公司決定向紅十字會(huì)捐款20萬(wàn)元,另外每銷(xiāo)售一件產(chǎn)品,就抽出1元錢(qián)作為捐款,若除去第一年的最大盈利(或最小虧損)以及第二年的捐款后,到2020年底,兩年的總盈利不低于57.5萬(wàn)元,請(qǐng)你確定此時(shí)銷(xiāo)售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形中,,,沿對(duì)角線剪開(kāi),再把沿方向平移,得到圖2,其中交于,交于.
(1)在圖2中,除與外,指出還有哪幾對(duì)全等三角形(不能添加輔助線和字母),并選擇一對(duì)加以證明;
(2)設(shè).①當(dāng)為何值時(shí),四邊形是菱形?②設(shè)四邊形的面積為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.
(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機(jī)選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是 ;
(2)若從支援的4名醫(yī)護(hù)人員中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名醫(yī)護(hù)人員來(lái)自同一所醫(yī)院的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,當(dāng)時(shí),點(diǎn)坐標(biāo)為;當(dāng)時(shí),點(diǎn)坐標(biāo)為,則稱(chēng)點(diǎn)為點(diǎn)的分變換點(diǎn)(其中為常數(shù)).例如:的0分變換點(diǎn)坐標(biāo)為.
(1)點(diǎn)的1分變換點(diǎn)坐標(biāo)為 ;點(diǎn)的1分變換點(diǎn)在反比例函數(shù)圖像上,則 ;若點(diǎn)的1分變換點(diǎn)直線上,則 ;
(2)若點(diǎn)在二次函數(shù)的圖像上,點(diǎn)為點(diǎn)的3分變換點(diǎn).
①直寫(xiě)出點(diǎn)所在函數(shù)的解析式;
②求點(diǎn)所在函數(shù)的圖像與直線交點(diǎn)坐標(biāo);
③當(dāng)時(shí),點(diǎn)所在函數(shù)的函數(shù)值,直接寫(xiě)出的取值范圍;
(3)點(diǎn),,若點(diǎn)在二次函數(shù)的圖像上,點(diǎn)為點(diǎn)的分變換點(diǎn).當(dāng)點(diǎn)所在函數(shù)的圖像與線段有兩個(gè)公共點(diǎn)時(shí),直接寫(xiě)出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com