【題目】如下表,從左邊第一個(gè)格子開始向右數(shù),在每個(gè)小格子中都填入一個(gè)整數(shù),使得其中仼意三個(gè)相鄰格子中所填整數(shù)之和都相等.
5 | 4 | …… |
(1)可求得_____;_____;_____.
(2)第2019個(gè)格子中的數(shù)為______;
(3)前2020個(gè)格子中所填整數(shù)之和為______.
(4)前個(gè)格子中所填整數(shù)之和是否可能為2020?若能,求出的值,若不能,請說明理由.
【答案】(1),,;(2)4;(3)665;(4)能;前6060,6071或6085個(gè)格子中所填整數(shù)之和為2020.
【解析】
(1)根據(jù)題意,直接求出x,y,z的值,即可;
(2)由題意得:表格中的數(shù)字是3個(gè)以循環(huán),進(jìn)而即可求解;
(3)由“表格中的數(shù)字是3個(gè)以循環(huán)” ,2020÷3=673…1,即可求解;
(4)分三種情況,分類討論,即可求解.
(1)由題意得:-8+x+y=x+y+z,解得:,
x+y+z= y+z+5,解得:,
∴表格中的數(shù)字是3個(gè)以循環(huán),即:-8,5,4,-8,5,4,…,
∴.
故答案是:,,;
(2)∵表格中的數(shù)字是3個(gè)以循環(huán),即:-8,5,4,-8,5,4,…,2019÷3=673,
∴第2019個(gè)格子中的數(shù)為:4.
故答案是:4;
(3)∵2020÷3=673…1,-8+5+4=1,
∴前2020個(gè)格子中所填整數(shù)之和為:673×1+(-8)=665.
故答案是:665.
(4)能,理由如下:
①,
;
②∵,
∴;
③∵,
∴;
綜上所述:前6060或6071或6085個(gè)格子中所填整數(shù)之和為2020.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長交AD于點(diǎn)F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
問題情境
在綜合與實(shí)踐課上,同學(xué)們以“三角形的折疊”為主題開展數(shù)學(xué)活動.
操作發(fā)現(xiàn)
“楊輝”小組的同學(xué)用一張鈍角三角形紙片,為鈍角,進(jìn)行了如下操作:
第一步:如圖1,折出的角平分線;
第二步:如圖2,展平紙片,再次折疊該三角形紙片,使預(yù)點(diǎn)與點(diǎn)重合,拆痕分別與,交于點(diǎn),;
第三步:如圖3,再次展平紙片,連接,,可得四邊形.
(1)在圖4的中利用尺規(guī)作出折痕,;
(要求:保留作圖痕跡,不寫作法)
實(shí)踐探究
(2)試判斷圖3中四邊形的形狀,并寫出證明過程;
深入探究
(3)“陳景潤”小組的同學(xué)突發(fā)奇想,在“楊輝”小組同學(xué)操作的基礎(chǔ)上設(shè)計(jì)了這樣一個(gè)問題:在圖3中,連接,分別交于點(diǎn),交于點(diǎn),若,,利用相似三角形的知識可以求出的長.請你寫出求解過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的邊上一點(diǎn)為圓心的圓,經(jīng)過、兩點(diǎn),且與邊交于點(diǎn),為的下半圓弧的中點(diǎn),連接交于,若.
(1)求證:是的切線;
(2)若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.點(diǎn)D由點(diǎn)A出發(fā)沿AB方向向點(diǎn)B勻速運(yùn)動,同時(shí)點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動,它們的速度均為1cm/s.連接DE,設(shè)運(yùn)動時(shí)間為t(s)(0<t<10),解答下列問題:
(1)當(dāng)t為何值時(shí),△BDE的面積為7.5cm2;
(2)在點(diǎn)D,E的運(yùn)動中,是否存在時(shí)間t,使得△BDE與△ABC相似?若存在,請求出對應(yīng)的時(shí)間t;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn).
(1)求的值和圖象的頂點(diǎn)坐標(biāo);
(2)點(diǎn)在該二次函數(shù)圖象上.
①當(dāng)時(shí),求的值;
②若點(diǎn)到軸的距離小于2,請根據(jù)圖象直接寫出的取值范圍;
③直接寫出點(diǎn)與直線的距離小于時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對正整數(shù)n的“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),F(n)=3n+1;②當(dāng)n為偶數(shù)時(shí),F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行,例如,取n=24,則:
若n=24,則第2019次“F”運(yùn)算的結(jié)果是( )
A.4B.1C.2018D.42018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,為半圓的直徑,將沿射線方向平移得到△A1B1C1.當(dāng)與半圓相切于點(diǎn)時(shí),平移的距離的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機(jī)器人來代替人工分揀,兩種型號的機(jī)器人的工作效率和價(jià)格如表:
型號 | 甲 | 乙 |
每臺每小時(shí)分揀快遞件數(shù)(件) | 1000 | 800 |
每臺價(jià)格(萬元) | 5 | 3 |
該公司計(jì)劃購買這兩種型號的機(jī)器人共10臺,并且使這10臺機(jī)器人每小時(shí)分揀快遞件數(shù)總和不少于8500件
(1)設(shè)購買甲種型號的機(jī)器人x臺,購買這10臺機(jī)器人所花的費(fèi)用為y萬元,求y與x之間的關(guān)系式;
(2)購買幾臺甲種型號的機(jī)器人,能使購買這10臺機(jī)器人所花總費(fèi)用最少?最少費(fèi)用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com