【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,經(jīng)過點(diǎn)C且與邊AB相切的動圓與CA,CB分別相交于點(diǎn)P,Q,則線段PQ的最小值( )

A.5
B.4
C.4.75
D.4.8

【答案】D
【解析】解:線段PQ長度的最小值時,PQ為圓的直徑,

如圖,設(shè)QP的中點(diǎn)為F,圓F與AB的切點(diǎn)為D,連接FD、CF、CD,

∵圓F與AB相切,∴FD⊥AB,

∵AB=5,AC=4,BC=3,

∴∠ACB=90°,F(xiàn)C+FD=PQ,

∴CF+FD>CD,且PQ為圓F的直徑,

∵當(dāng)點(diǎn)F在直角三角形ABC的斜邊AB的高上CD時,PQ=CD有最小值,即CD為圓F的直徑,

且SABC= BCCA= CDAB,

∴CD= =4.8,即PQ的最小值為4.8,

所以答案是:D.

【考點(diǎn)精析】本題主要考查了三角形的面積和勾股定理的逆定理的相關(guān)知識點(diǎn),需要掌握三角形的面積=1/2×底×高;如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①所示,P是等邊△ABC內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAPB點(diǎn)順時針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;

(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點(diǎn),連接PA、PB、PC,將△BAPB點(diǎn)順時針旋轉(zhuǎn)90°得△BCQ,連接PQ.當(dāng)PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

某商場用8萬元購進(jìn)一批新款襯衫,上架后很快銷售一空,商場又緊急購進(jìn)第二批這種襯衫,數(shù)量是第一次的2倍,但進(jìn)價漲了4/件,結(jié)果共用去17.6萬元.

(1)該商場第一批購進(jìn)襯衫多少件?

(2)商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是連續(xù)十周測試甲、乙兩名運(yùn)動員體能情況的折線統(tǒng)計(jì)圖,教練組規(guī)定:體能測試成績70分以上(包括70)為合適.

(1)請根據(jù)圖中所提供的信息填寫下表:

平均數(shù)

中位數(shù)

體能測試成績合格次數(shù)(次)

65

60

(2)請從下面兩個不同的角度對運(yùn)動員體能測試結(jié)果進(jìn)行判斷:①依據(jù)平均數(shù)與成績合格的次數(shù)比較甲和乙,哪個的體能測試成績較好;②依據(jù)平均數(shù)與中位數(shù)比較甲和乙,哪個的體能測試成績較好;

(3)依據(jù)折線統(tǒng)計(jì)圖和成績合格的次數(shù),分析哪位運(yùn)動員體能訓(xùn)練的效果較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O,A,B,C的坐標(biāo)分別為(0,0)(12),(33)(2,1)

(1)若圖中的各個點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)都乘-1,與原圖案相比,所得圖案有什么變化?畫出圖形并說明一下變化.

(2)若圖中的各個點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘-1,與原圖案相比,所得圖案有什么變化?畫出圖形并說明一下變化.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將RtABC繞直角頂點(diǎn)C順時針旋轉(zhuǎn)90°,得到A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請你補(bǔ)全證明過程:如圖,DGBC,ACBC,EFAB,∠1=2,求證:EFCD

證明:∵DGBC,ACBC(已知)

∴∠DGB=90°,∠ACB=90°①(

∴∠DGB=ACB ( )

DGAC ( )

∴∠2= ________ ⑤(

又∠1=2 ⑥(

∴∠1=DCA ⑦(

EFCD ⑧(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,AD=BD,BEAD邊上的高,∠EBD=28°,則∠A的度數(shù)為_______.

查看答案和解析>>

同步練習(xí)冊答案