【題目】定義:若函數(shù)與軸的交點(diǎn)的橫坐標(biāo)為,,與軸交點(diǎn)的縱坐標(biāo)為,若,中至少存在一個(gè)值,滿足(或),則稱該函數(shù)為友好函數(shù).如圖,函數(shù)與軸的一個(gè)交點(diǎn)的橫坐標(biāo)為-3,與軸交點(diǎn)的縱坐標(biāo)為-3,滿足,稱為友好函數(shù).
(1)判斷是否為友好函數(shù),并說明理由;
(2)請(qǐng)?zhí)骄坑押煤瘮?shù)表達(dá)式中的與之間的關(guān)系;
(3)若是友好函數(shù),且為銳角,求的取值范圍.
【答案】(1)是,理由見解析;(2);(3)或,且
【解析】
(1)根據(jù)友好函數(shù)的定義,求出函數(shù)與x軸交點(diǎn)的橫坐標(biāo)以及與y軸交點(diǎn)的縱坐標(biāo),即可進(jìn)行判斷;
(2)先求出函數(shù)與y軸交點(diǎn)的縱坐標(biāo)為c,再根據(jù)定義,可得當(dāng)x=c時(shí),y=0,據(jù)此可得出結(jié)果;
(3)分一下三種情況求解:(ⅰ)當(dāng)在軸負(fù)半軸上時(shí),由(2)可得:,進(jìn)而可得出結(jié)果;(ⅱ)當(dāng)在軸正半軸上時(shí),且與不重合時(shí),畫出圖像可得出結(jié)果;(ⅲ)當(dāng)與原點(diǎn)重合時(shí),不符合題意.
解:(1)是友好函數(shù).理由如下:
當(dāng)時(shí),;當(dāng)時(shí),或3,
∴與軸一個(gè)交點(diǎn)的橫坐標(biāo)和與軸交點(diǎn)的縱坐標(biāo)都是3.
故是友好函數(shù).
(2)當(dāng)時(shí),,即與軸交點(diǎn)的縱坐標(biāo)為.
∵是友好函數(shù).
∴時(shí),,即在上.
代入得:,而,∴.
(3)(ⅰ)當(dāng)在軸負(fù)半軸上時(shí),由(2)可得:,
即,顯然當(dāng)時(shí),,
即與軸的一個(gè)交點(diǎn)為.
則,∴只需滿足,即.
∴.
(ⅱ)當(dāng)在軸正半軸上時(shí),且與不重合時(shí),
∴顯然都滿足為銳角.
∴,且.
(ⅲ)當(dāng)與原點(diǎn)重合時(shí),不符合題意.
綜上所述,或,且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐:
操作與發(fā)現(xiàn):
如圖,已知A,B兩點(diǎn)在直線CD的同一側(cè),線段AE,BF均是直線CD的垂線段,且BF在AE的右邊,AE=2BF,將BF沿直線CD向右平移,在平移過程中,始終保持∠ABP=90°不變,BP邊與直線CD相交于點(diǎn)P,點(diǎn)G是AE的中點(diǎn),連接BG.
探索與證明:求證:
(1)四邊形EFBG是矩形;
(2)△ABG∽△PBF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師布置了一個(gè)作業(yè),如下:已知:如圖1的對(duì)角線的垂直平分線交于點(diǎn),交于點(diǎn),交于點(diǎn).求證:四邊形是菱形.
某同學(xué)寫出了如圖2所示的證明過程,老師說該同學(xué)的作業(yè)是錯(cuò)誤的.請(qǐng)你解答下列問題:
(1)能找出該同學(xué)錯(cuò)誤的原因嗎?請(qǐng)你指出來;
(2)請(qǐng)你給出本題的正確證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】空間任意選定一點(diǎn),以點(diǎn)為端點(diǎn)作三條互相垂直的射線,,.這三條互相垂直的射線分別稱作軸、軸、軸,統(tǒng)稱為坐標(biāo)軸,它們的方向分別為(水平向前),(水平向右),(豎直向上)方向,這樣的坐標(biāo)系稱為空間直角坐標(biāo)系.將相鄰三個(gè)面的面積記為,且的小長(zhǎng)方體稱為單位長(zhǎng)方體,現(xiàn)將若干個(gè)單位長(zhǎng)方體在空間直角坐標(biāo)系內(nèi)進(jìn)行碼放,要求碼放時(shí)將單位長(zhǎng)方體所在的面與軸垂直,所在的面與軸垂直,所在的面與軸垂直,如圖所示.若將軸方向表示的量稱為幾何體碼放的排數(shù),軸方向表示的量稱為幾何體碼放的列數(shù),軸方向表示的量稱為幾何體碼放的層數(shù);如圖是由若干個(gè)單位長(zhǎng)方體在空間直角坐標(biāo)內(nèi)碼放的一個(gè)幾何體,其中這個(gè)幾何體共碼放了排列層,用有序數(shù)組記作 (1,2,6),如圖的幾何體碼放了排列層,用有序數(shù)組記作 (2,3,4).這樣我們就可用每一個(gè)有序數(shù)組表示一種幾何體的碼放方式.
(1)有序數(shù)組 (3,2,4)所對(duì)應(yīng)的碼放的幾何體是_____;
(2)圖是由若干個(gè)單位長(zhǎng)方體碼放的一個(gè)幾何體的三視圖,則這種碼放方式的有序數(shù)組為(___,____,____),組成這個(gè)幾何體的單位長(zhǎng)方體的個(gè)數(shù)為____個(gè);
(3)為了進(jìn)一步探究有序數(shù)組的幾何體的表面積公式,某同學(xué)針對(duì)若干個(gè)單位長(zhǎng)方體進(jìn)行碼放,制作了下列表格:
根據(jù)以上規(guī)律,請(qǐng)直接寫出有序數(shù)組的幾何體表面積的計(jì)算公式;(用表示)
(4)當(dāng)時(shí),對(duì)由個(gè)單位長(zhǎng)方體碼放的幾何體進(jìn)行打包,為了節(jié)約外包裝材料,我們可以對(duì)個(gè)單位長(zhǎng)方體碼放的幾何體表面積最小的規(guī)律進(jìn)行探究,請(qǐng)你根據(jù)自己探究的結(jié)果直接寫出使幾何體表面積最小的有序數(shù)組,這個(gè)有序數(shù)組為(___,___,___),此時(shí)求出的這個(gè)幾何體表面積的大小為________.(縫隙不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由24個(gè)小正方形組成的網(wǎng)格圖,每一個(gè)正方形的頂點(diǎn)都稱為格點(diǎn),的三個(gè)頂點(diǎn)都是格點(diǎn).請(qǐng)按要求完成下列作圖,每個(gè)小題只需作出一個(gè)符合條件的圖形.
(1)在圖1網(wǎng)格中找格點(diǎn),作直線,使直線平分的面積;
(2)在圖2網(wǎng)格中找格點(diǎn),作直線,使直線把的面積分成兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的10×10網(wǎng)格中,已知點(diǎn)O,A,B均為網(wǎng)格線的交點(diǎn).
(1)在給定的網(wǎng)格中,以點(diǎn)O為位似中心,將線段AB放大為原來的2倍,得到線段(點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為).畫出線段;
(2)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到線段.畫出線段;
(3)以為頂點(diǎn)的四邊形的面積是 個(gè)平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉辦運(yùn)動(dòng)會(huì),在1500米的項(xiàng)目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑的最快的一位選手與最慢的一位選手的跑步過程(最快的選手跑完了全程),其中x表示最快的選手的跑步時(shí)間,y表示這兩位選手之間的距離,現(xiàn)有以下4種說法,正確的有( 。
①最快的選手到達(dá)終點(diǎn)時(shí),最慢的選手還有15米未跑;
②跑的最快的選手用時(shí)4'46″;
③出發(fā)后最快的選手與最慢的選手相遇了兩次;
④出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時(shí)長(zhǎng).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動(dòng)物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測(cè)得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),y與x成反比例).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問血液中藥物濃度不低于2微克/毫升的持續(xù)時(shí)間多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線過點(diǎn),兩點(diǎn),與y軸交于點(diǎn)C,.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)過點(diǎn)A作,垂足為M,求證:四邊形ADBM為正方形;
(3)點(diǎn)P為拋物線在直線BC下方圖形上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo);
(4)若點(diǎn)Q為線段OC上的一動(dòng)點(diǎn),問:是否存在最小值?若存在,求岀這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com