【題目】有兩個內(nèi)角分別是它們對角的一半的四邊形叫做半對角四邊形
(1)如圖1,在半對角四邊形ABCD中,∠B=∠D,∠C=∠A,求∠B與∠C的度數(shù)之和;
(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點D,使得BD=BO,∠OBA的平分線交OA于點E,連結(jié)DE并延長交AC于點F,∠AFE=2∠EAF.求證:四邊形DBCF是半對角四邊形;
(3)如圖3,在(2)的條件下,過點D作DG⊥OB于點H,交BC于點G,當(dāng)DH=BG=2時,求⊙O的直徑.
【答案】(1) ∠B與∠C的度數(shù)和為120°;(2)詳見解析;(3)8.
【解析】
根據(jù)題意得出∠B=∠D,∠C=∠A,代入∠A+∠B+∠C+∠D=360°求出即可;
求出△BED≌△BEO ,根據(jù)全等得出∠BDE=∠BOE ,連接OC,設(shè)∠EAF=α,則∠AFE=2∠EAF=2α,求出∠EFC=180°-∠AFE=180°-2α,∠AOC=180°-2α,即可得出等答案;
過點O作OM⊥BC,再由角與角之間關(guān)系得出邊與邊之間關(guān)系,進(jìn)而得出解.
(1)在半對角四邊形ABCD中,∠B=∠D,∠C=∠A,∵∠A+∠B+∠C+∠D=360°,∴3∠B+3∠C=360°,∴∠B+∠C=120°,即∠B與∠C的度數(shù)和為120°;
(2)證明:∵在△BED和△BEO中BD=BO,∠EBD=∠EBO,BE=BE∴△BED≌△BEO,∴∠BDE=∠BOE,∵∠BCF=∠BOE,∴∠BCF=∠BDE,連接OC,設(shè)∠EAF=α,則∠AFE=2∠EAF=2α,∴∠EFC=180°-∠AFE=180°-2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°-∠OAC-∠OCA=180°-2α,∴∠ABC=∠AOC=∠EFC,∴四邊形DBCF是半對角四邊形;
(3)解:過點O作OM⊥BC于M,∵四邊形DBCF是半對角四邊形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=BO=BD,∵DG⊥OB,∠DBO=30°,∵DH=BG=2時,BD=4,直徑=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=30°,點D在BC邊上,點E在AC邊上,AD=BD,DE=CE,若△ADE為等腰三角形,則∠C的度數(shù)為_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC,延長△ABC的各邊分別到點D、E、F使得AE=BF=CD,順次連接D、E、F,求證:△DEF是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(2,3),頂點坐標(biāo)(1,4)
(1)求該二次函數(shù)的解析式;
(2)圖象與x軸的交點為A、B,與y軸的交點為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵政部門規(guī)定:信函重100克以內(nèi)(包括100克)每20克貼郵票0.8元,不足20克重以20克計算;超過100克,先貼郵票4元,超過100克部分每100克加貼郵票2元,不足100克重以100克計算.八(9)班有11位同學(xué)參加項目化學(xué)習(xí)知識競賽,若每份答卷重12克,每個信封重4克,將這11份答卷分裝在兩個信封中寄出,所貼郵票的總金額最少是_________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當(dāng)時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)你站在博物館的展覽廳中時,你知道站在何處觀賞最理想嗎?如圖,設(shè)墻壁上的展品最高點P距地面2.5米,最低點Q距地面2米,觀賞者的眼睛F距地面1.6米,當(dāng)視角∠PEQ最大時,站在此處觀賞最理想,則此時E到墻壁的距離為( )米.
A. 1 B. 0.6 C. 0.5 D. 0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com