【題目】填寫理由:

已知:如圖,ABC是直線,1=115°,D=65°.

求證:ABDE.

證明:∵ABC是一直線,(已知)

∴∠1+2=180°( )

∵∠1=115°(已知)

∴∠2=65°

又∵∠D=65°(已知)

∴∠2=D

( )

【答案】平角定義 ABDE 內(nèi)錯(cuò)角相等,兩直線平行

【解析】

首先根據(jù)平角定義可得∠1+2=180,然后可計(jì)算出∠2的度數(shù),從而可得∠2=A,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得ABCD.

證明:∵ABC是一直線,(已知),

∴∠1+2=180°( 平角定義),

∵∠1=115°(已知),

∴∠2=65°,

又∵∠D=65°(已知),

∴∠2=D,

ABDE (內(nèi)錯(cuò)角相等,兩直線平行),

故答案為:平角定義,ABDE,內(nèi)錯(cuò)角相等,兩直線平行

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°AB=AC,直線m經(jīng)過點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,D、AE三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、AE三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,A1(1,0),A2(1,1),A3(1,1),A4(1,-1),A5(2,-1)

(1)繼續(xù)填寫:A6(________________),A7(________________),A8(________,________),A9((________________)A10((________,________),A11(________________)A12(________,________),A13(________________)

(2)寫出點(diǎn)A2010(________,________),A2011(________,________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直角坐標(biāo)平面內(nèi)兩點(diǎn)A(2,-3)B(3,-3),將點(diǎn)B向上平移5個(gè)單位到達(dá)點(diǎn)C,求:

(1)A、B兩點(diǎn)間的距離;

(2)寫出點(diǎn)C的坐標(biāo);

(3)四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將ABC平移到A′B′C′的位置,連接BB′,AA′,CC′,平移的方向是點(diǎn)______到點(diǎn)________的方向,平移的距離是線段______的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是邊長(zhǎng)為2的等邊三角形,點(diǎn)A在y軸上,點(diǎn)O,B1 , B2 , B3…都在直線l上,則點(diǎn)B2017的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC的∠C折起,翻折后角的頂點(diǎn)位置記作C′,當(dāng)C′落在AC上時(shí)(如圖1),易證:∠1=22.

當(dāng)C′點(diǎn)落在CACB之間(如圖2)時(shí),或當(dāng)C′落在CB、CA的同旁(如圖3)時(shí),∠1、2、3關(guān)系又如何?請(qǐng)寫出你的猜想,并就其中一種情況給出證明.

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫理由:

已知:如圖,ABC是直線,1=115°,D=65°.

求證:ABDE.

證明:∵ABC是一直線,(已知)

∴∠1+2=180°( )

∵∠1=115°(已知)

∴∠2=65°

又∵∠D=65°(已知)

∴∠2=D

( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線ABCD于點(diǎn)O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE52,則∠AOF等于( 。

A. 140° B. 130° C. 120° D. 110°

查看答案和解析>>

同步練習(xí)冊(cè)答案