【題目】如圖,在中,,,.動點以每秒5個單位長度的速度從點出發(fā),沿的方向向終點運動.點關于點的對稱點為,過點作于點,以、為邊作,設點的運動時間為.
(1)當點在上運動時,用含的代數(shù)式表示的長.
(2)當為菱形時,求的值.
(3)設的面積為,求與之間的函數(shù)關系式.
(4)作點關于直線的對稱點,當點落在內(nèi)部時,直接寫出的取值范圍.
【答案】(1);(2)或;(3)當時,;當時, ;(4)或.
【解析】
(1)先證△APQ∽△ABC,根據(jù)相似比可得出答案;
(2)當為菱形時,即PQ=2PC,分兩種情況討論:①點P在AC上時,②點P在BC上時,分別求解即可;
(3)分兩種情況討論即可:①當點P在AC上時,②當點P在BC上時,分別求出的高即可解決問題;
(4)分兩種情況討論即可:①當點P在AC上時,②當點P在BC上時,找到兩種情況的臨界值即可.
解:(1)∵,,,
∴根據(jù)勾股定理有,
∵動點以每秒5個單位長度的速度從點出發(fā),
∴AP=5t,
∵PQ⊥AB,
∴∠AQP=90°,
在△APQ與△ABC中,∠AQP=∠ACB,∠A=∠A,
∴△APQ∽△ABC,
∴,
∴,
∴當點在上運動時,;
(2)根據(jù)題意可知AP=5t,
∴PC=15-5t,
∵關于點的對稱點為,
∴PC=CD,
∴PD=2PC=30-10t,
當為菱形時,即PQ=PD時,
①當點P在AC上時,(),
解得;
②當點P在BC上時,PB=35-5t,PC=5t-15,PD=10t-30,
在△BPQ與△BAC中,∠BQP=∠BCA=90°,∠B=∠B,
∴△BPQ∽△BAC,
∴,
∴,
∴當點P在BC上時,,
解得;
(3)①當點P在AC上時,即時,如圖,作QH⊥AC于點H,
由(1)(2)可知AB=25,△APQ∽△ABC ,AP=5t,PQ=4t,PC=15-5t,PD=30-10t,
∴,
∴AQ=3t,
∵,
∴,
∴;
②當點P在BC上時,即時,如圖,作QF⊥BC于點F,
由(2)可知AB=25,△BPQ∽△BAC,PB=35-5t,PC=5t-15,PD=10t-30,PQ=3(7-t),
∴,
∴,
∵,
∴,
∴;
(4)結(jié)合(3)①當點P在AC上時,此時,如下圖,
當恰好在AC上時,此時根據(jù)對稱的性質(zhì)和平行四邊形的性質(zhì),可知四邊形與四邊形是平行四邊形,所以,又因為AP=5t,所以有,解得,所以此時t的取值范圍;
②當點P在BC上時,此時時,如下圖,
當恰好在BC上時,此時根據(jù)對稱的性質(zhì)和平行四邊形的性質(zhì),可知四邊形與四邊形是平行四邊形,所以,又因為PC=5t-15,PD=10t-30,,所以有,解得,所以此時t的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平行四邊形ABCD中,AB︰BC=3︰2.
(1)根據(jù)條件畫圖:作∠BCD的平分線,交邊AB于點E,取線段BE的中點F,連接DF交CE于點G.
(2)設,那么向量=______.(用向量、表示),并在圖中畫出向量在向量和方向上的分向量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉(zhuǎn)30°后得到正方形AB′C′D′.
(1)求證:ED=EB′;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=1.分析下列5個結(jié)論:①2c<3b;②若0<x<3,則ax2+bx+c>0;③;④(k為實數(shù));⑤(m為實數(shù)).其中正確的結(jié)論個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+3與x軸的兩個交點分別為A、B(1,0),與y軸交于點D,直線AD:,拋物線頂點為C,作CH⊥x軸于點H.
(1)求拋物線的解析式;
(2)拋物線上是否存在點M,使得S△ACD=S△MAB?若存在,求出點M的坐標;若不存在,說明理由;
(3)若點P為x軸上方的拋物線上一動點(點P與頂點C不重合),PQ⊥AC于點Q,當△PCQ與△ACH相似時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,,下列結(jié)論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,連接AD,求∠ADB的度數(shù).(不必解答)
(1)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD′,連接CD′(如圖2),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.
請結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是 三角形;∠ADB的度數(shù)為 .
(2)在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);
(3)在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)?/span>BC=7,AD=2.請直接寫出線段BE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點,所以對應的方程x2﹣2|x|=0有 個實數(shù)根;
②方程x2﹣2|x|=2有 個實數(shù)根.
③關于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com