【題目】如圖,在△ABC 中,AB = AC,以AB為直徑的⊙O 分 別交AC,BC于點 D,E,過點B作⊙O的切線, 交 AC的延長線于點F.
(1) 求證:∠CBF =∠CAB;
(2) 若CD = 2,,求FC的長.
【答案】(1)見解析;(2)FC= .
【解析】
(1)利用等腰三角形的性質(zhì)易證∠BAE=∠EAC=∠CAB,由弦切角定理可得∠BAE=∠CBF,即可證明.
(2)連接BD,由∠DBC=∠CBF. 得到tan∠DBC=.得出BD=4. 設AB=x,則AD= ,在RtΔABD中,根據(jù)勾股定理求得AB=5,證明ΔABD∽ΔAFB,根據(jù)相似三角形的性質(zhì)即可求解.
(1)證明:∵AB 為⊙O的直徑,
∴∠AEB=90°.
∴∠BAE+∠ABC=90°,
∵AB = AC,
∴∠BAE=∠EAC=∠CAB.
∵BF為⊙O 的切線,
∴∠ABC+∠CBF=90°.
∴∠BAE=∠CBF.
∴∠CBF =∠CAB.
(2)解:連接BD,
∵AB 為⊙O的直徑,
∴∠ADB=90°.
∵∠DBC=∠DAE,
∴∠DBC=∠CBF.
∵tan∠CBF=.
∴tan∠DBC=.
∵CD=2,
∴BD=4.
設AB=x,則AD= ,
在RtΔABD中,∠ADB=90°,由勾股定理得x=5.
∴AB=5,AD=3.
∵∠ABF=∠ADB=90°,∠BAF=∠BAF.
∴ΔABD∽ΔAFB.
∴.
∴AF=.
∴FC=AF-AC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 3,AC = 4,點D為邊AB上一點.將△BCD沿直線CD翻折,點B落在點E處,聯(lián)結AE.如果AE // CD,那么BE =________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風景.大橋主體工程隧道的東、西兩端各設置了一個海中人工島,來銜接橋梁和海底隧道,西人工島上的A點和東人工島上的B點間的距離約為5.6千米,點C是與西人工島相連的大橋上的一點,A,B,C在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達P點時觀測兩個人工島,分別測得與觀光船航向的夾角∠DPA=18°,∠DPB=53°,求此時觀光船到大橋AC段的距離的長.
參考數(shù)據(jù):°,°,°,°,°,°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點P從B出發(fā)沿BA向A運動,速度為每秒1cm,點E是點B以P為對稱中心的對稱點,點P運動的同時,點Q從A出發(fā)沿AC向C運動,速度為每秒2cm,當點Q到達頂點C時,P,Q同時停止運動,設P,Q兩點運動時間為t秒.
(1)當t為何值時,PQ∥BC?
(2)設四邊形PQCB的面積為y,求y關于t的函數(shù)關系式;
(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時t的值;若不能,請說明理由;
(4)當t為何值時,△AEQ為等腰三角形?(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:Rt△ABC中,∠ACB=90°,AC=BC.
(1)如圖1,點D是BC邊上一點(不與點B,C重合),連接AD,過點B作BE⊥AD,交AD的延長線于點E,連接CE.若∠BAD=α,求∠DBE的大。ㄓ煤α的式子表示);
(2)如圖2,點D在線段BC的延長線上時,連接AD,過點B作BE⊥AD,垂足E在線段AD上,連接CE.
①依題意補全圖2;
②用等式表示線段EA,EB和EC之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】茗陽閣位于河南省信陽市獅河區(qū)茶韻路一號,建成于2007年4月29日.是一棟由多種中國建筑元素,由雕欄飛檐、勾心斗角、斗拱圖騰等多種形式的中國古代建筑元素匯聚而成,具有濃郁地方古建筑特色的塔式閣樓.茗陽閣是信陽新建的城市文化與形象的代表建筑之一,同時茗陽閣旁的風景也是優(yōu)美至極.某數(shù)學課外興趣小組為了測量建在山丘上的茗陽閣的高度,在山腳下的廣場上處測得建筑物點(即山頂)的仰角為20°,沿水平方向前進20米到達點,測得建筑物頂部點的仰角為45°,已知山丘高37.69米.求塔的高度.(結果精確到1米,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究:
(1)已知:如圖①,△ABC中請你用尺規(guī)在BC邊上找一點D,使得點A到點BC的距離最短.
(2)托勒密(Ptolemy)定理指出,圓的內(nèi)接四邊形兩對對邊乘積的和等于兩條對角線的乘積.如圖②,P是正△ABC外接圓的劣弧BC上任一點(不與B、C重合),請你根據(jù)托勒密(Ptolemy)定理證明:PA=PB+PC
問題解決:
(3)如圖③,某學校有一塊兩直角邊長分別為30m、60m的直角三角形的草坪,現(xiàn)準備在草坪內(nèi)放置一對石凳及垃圾箱在點P處,使P到A、B、C三點的距離之和最小,那么是否存在符合條件的點P?若存在,請作出點P的位置,并求出這個最短距離(結果保留根號);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一聲汽笛長鳴,火車開進了蔡家崖.這是我省呂梁革命老區(qū)人民期盼已久的客運列車.蔡家崖列車的開通.帶動老區(qū)駛入了發(fā)展紅色旅游的快車進.某旅行社對去年“國慶”期間到呂梁觀光的游客的出行方式進行了隨機抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,回答下列問題:
(1)求本次抽樣調(diào)查的總人數(shù):
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中“其他”部分扇形的圓心角度數(shù)為____;
(4)去年“國慶”期問到呂梁觀光的旅游者為275萬人,則選擇自駕方式出行的有多少萬人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com