【題目】一聲汽笛長鳴,火車開進(jìn)了蔡家崖.這是我省呂梁革命老區(qū)人民期盼已久的客運列車.蔡家崖列車的開通.帶動老區(qū)駛?cè)肓税l(fā)展紅色旅游的快車進(jìn).某旅行社對去年國慶期間到呂梁觀光的游客的出行方式進(jìn)行了隨機(jī)抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,回答下列問題:

1)求本次抽樣調(diào)查的總?cè)藬?shù):

2)補(bǔ)全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中其他部分扇形的圓心角度數(shù)為____;

4)去年國慶期問到呂梁觀光的旅游者為275萬人,則選擇自駕方式出行的有多少萬人.

【答案】1)本次抽樣調(diào)查的人數(shù)為2500人;(2)補(bǔ)全條形統(tǒng)計圖見解析;(354°;(4)選擇自駕方式出游的有110萬人.

【解析】

1)根據(jù)自駕的人數(shù)和所占的百分比求總數(shù)(2)根據(jù)總數(shù)減去公共交通和自駕的人數(shù)得到其他人數(shù),補(bǔ)全條形統(tǒng)計統(tǒng)計圖(3)根據(jù)每個百分比所占的度數(shù)乘以其他所占的百分比即可(4)用新的人數(shù)乘以自駕所占的百分比即可得到結(jié)果.

解:(1(人).

答:本次抽樣調(diào)查的人數(shù)為2500人.

2)補(bǔ)全條形統(tǒng)計圖如下.

3

4(萬人)

答:選擇自駕方式出游的有110萬人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,AB = AC,以AB為直徑的⊙O 別交AC,BC于點 D,E,過點B作⊙O的切線, AC的延長線于點F

(1) 求證:∠CBF =CAB

(2) CD = 2,,求FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc(a0)的圖象如圖所示,則正比例函數(shù)y(bc)x

的圖象與反比例函數(shù)的圖象在同一坐標(biāo)系中大致是【 】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖像如圖,下列結(jié)論:①;②;③;④.正確的個數(shù)為(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一聲汽笛長鳴,火車開進(jìn)了蔡家崖.這是我省呂梁革命老區(qū)人民期盼已久的客運列車.蔡家崖列車的開通.帶動老區(qū)駛?cè)肓税l(fā)展紅色旅游的快車進(jìn).某旅行社對去年國慶期間到呂梁觀光的游客的出行方式進(jìn)行了隨機(jī)抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據(jù)圖中信息,回答下列問題:

1)求本次抽樣調(diào)查的總?cè)藬?shù):

2)補(bǔ)全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中其他部分扇形的圓心角度數(shù)為____;

4)去年國慶期問到呂梁觀光的旅游者為275萬人,則選擇自駕方式出行的有多少萬人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊三角形空地上種草皮綠化,已知AB20米,AC30米,∠A150°,草皮的售價為a/2,則購買草皮至少需要(  )

A. 450a B. 225a C. 150a D. 300a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝改革開放40周年,深圳舉辦了燈光秀,某數(shù)學(xué)興趣小組為測量“平安金融中心”AB的高度,他們在地面C處測得另一幢大廈DE的頂部E處的仰角∠ECD=32°.登上大廈DE的頂部E處后,測得“平安中心”AB的頂部A處的仰角為60°,(如圖).已知C、DB三點在同一水平直線上,且CD=400米,DB=200米.

1)求大廈DE的高度;

2)求平安金融中心AB的高度.

(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85tan32°≈0.62,1.41,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

問題:如圖,在正方形和平行四邊形中,點,,在同一條直線上,是線段的中點,連接,

探究:當(dāng)的夾角為多少度時,平行四邊形是正方形?

小聰同學(xué)的思路是:首先可以說明四邊形是矩形;然后延長于點,構(gòu)造全等三角形,經(jīng)過推理可以探索出問題的答案.

請你參考小聰同學(xué)的思路,探究并解決這個問題.

(1)求證:四邊形是矩形;

(2)的夾角為________度時,四邊形是正方形.

理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點A12),B32),連接AB.若對于平面內(nèi)一點P,線段AB上都存在點Q,使得PQ≤2,則稱點P是線段AB影子

1)在點C0,1),D2,),E4,5)中,線段AB影子

2)若點Mm,n)在直線y=-x+2上,且不是線段AB影子,求m的取值范圍.

3)若直線y=x+b上存在線段AB影子,求b的取值范圍以及影子構(gòu)成的區(qū)域面積.

查看答案和解析>>

同步練習(xí)冊答案