【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉90°后,得到△CBE.
(1)求∠DCE的度數;
(2)若AB=4,CD=3AD,求DE的長.
【答案】
(1)解:∵△ABCD為等腰直角三角形,
∴∠BAD=∠BCD=45°.
由旋轉的性質可知∠BAD=∠BCE=45°.
∴∠DCE=∠BCE+∠BCA=45°+45°=90°.
(2)解:∵BA=BC,∠ABC=90°,
∴AC= =4 .
∵CD=3AD,
∴AD= ,DC=3 .
由旋轉的性質可知:AD=EC= .
∴DE= =2 .
【解析】(1)首先由等腰直角三角形的性質求得∠BAD、∠BCD的度數,然后由旋轉的性質可求得∠BCE的度數,故此可求得∠DCE的度數;(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的長,然后依據比例關系可得到CE和DC的長,最后依據勾股定理求解即可.
科目:初中數學 來源: 題型:
【題目】從甲地到乙地,先是一段平路,然后是一段上坡路。小明騎車從甲地出發(fā),到達乙地后立即原路返回甲地,途中休息了一段時間。假設小明騎車在平路、上坡、下坡時分別保持勻速前進.已知小明騎車上坡的速度比平路上的速度每小時少5km,下坡的速度比在平路上的速度每小時多5km。設小明出發(fā)xh后,到達離甲地y km的地方,圖中的折線OABCDE表示y與x之間的函數關系.
(1)小明騎車在平路上的速度為 km/h;他途中休息了 h;
(2)求線段AB,BC所表示的y與之間的函數關系式;
(3)如果小明兩次經過途中某一地點的時間間隔為0.15h,那么該地點離甲地多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.“任意畫一個三角形,其內角和是360°”是隨機事件
B.“明天的降水概率為80%”,意味著明天降雨的可能性較大
C.“某彩票中獎概率是1%”,表示買100張這種彩票一定會中獎
D.曉芳拋一枚硬幣10次,有7次正面朝上,當她拋第11次時,正面向上的概率為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2017年中秋節(jié)期間,某商城隆重開業(yè),某商家有計劃選購甲、乙兩種禮盒作為開業(yè)期間給予買家的禮品,已知甲禮盒的單價是乙禮盒單價的1.5倍;用600元單獨購買甲種禮盒比單獨購買乙種禮盒要少10個.
(1)求甲、乙兩種禮盒的單價分別為多少元?
(2)若商家計劃購買這兩種禮盒共40個,且投入的經費不超過1050元,則購買的甲種禮盒最多買多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:
①4a+b=0;
②9a+c<3b;
③25a+5b+c=0;
④當x>2時,y隨x的增大而減小.
其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2﹣2(k+1)x+k2=0有兩個實數根x1、x2 .
(1)求k的取值范圍;
(2)若x1+x2=3x1x2﹣6,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為100米的正三角形花壇的邊上,甲、乙兩人分別從兩個頂點同時出發(fā),按逆時針方向行走,已知甲的速度是42米/分,乙的速度是34米/分.出發(fā)后________分鐘,甲乙兩人第一次走在同一條邊上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現(xiàn)有五張分別畫有等邊三角形、平行四邊形、矩形、正五邊形和圓的五個圖形的卡片,它們的背面相同,小梅將它們的背面朝上,從中任意抽出一張,下列說法中正確的是( )
A.“抽出的圖形是中心對稱圖形”屬于必然事件
B.“抽出的圖形是六邊形”屬于隨機事件
C.抽出的圖形為四邊形的概率是
D.抽出的圖形為軸對稱圖形的概率是
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com