如圖所示,已知正方形ABCD的邊長(zhǎng)為4,E是BC邊上的一個(gè)動(dòng)點(diǎn),AE⊥EF,EF交DC于點(diǎn)F,設(shè)BE=x,F(xiàn)C=y,則當(dāng)點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),y關(guān)于x的函數(shù)圖象是       (填序號(hào)).

試題分析:通過設(shè)出BE=x,F(xiàn)C=y,且△AEF為直角三角形,運(yùn)用勾股定理得出y與x的關(guān)系,在判斷出函數(shù)圖象.
設(shè)BE=x,F(xiàn)C=y,則AE2=x2+42,EF2=(4-x)2+y2,AF2=(4-y)2+42
又∵△AEF為直角三角形,
∴AE2+EF2=AF2.即x2+42+(4-x)2+y2=(4-y)2+42
化簡(jiǎn)得:y=x2+x = (x-2)2+1,
很明顯,函數(shù)對(duì)應(yīng)①.
點(diǎn)評(píng):解題的關(guān)鍵是讀懂題意,找出等量關(guān)系,準(zhǔn)確列出函數(shù)關(guān)系式,再判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)B1是拋物線的頂點(diǎn),點(diǎn)A1、A2都在該拋物線上,四邊形OA1B1C1、OA2B2C2均為正方形,點(diǎn)B2在y軸上,直線C2B2與該拋物線交于點(diǎn),則的值是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知點(diǎn)B(1,3)、C(1,0),直線y=x+k經(jīng)過點(diǎn)B,且與x軸交于點(diǎn)A,將△ABC沿直線AB折疊得到△ABD.

(1)填空:A點(diǎn)坐標(biāo)為(____,____),D點(diǎn)坐標(biāo)為(____,____);
(2)若拋物線y= x2+bx+c經(jīng)過C、D兩點(diǎn),求拋物線的解析式;
(3)將(2)中的拋物線沿y軸向上平移,設(shè)平移后所得拋物線與y軸交點(diǎn)為E,點(diǎn)M是平移后的拋物線與直線AB的公共點(diǎn),在拋物線平移過程中是否存在某一位置使得直線EM∥x軸.若存在,此時(shí)拋物線向上平移了幾個(gè)單位?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)Q是直線AC上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)Q作QE垂直于軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖像過點(diǎn),與軸交于點(diǎn).

(1)證明:(其中是原點(diǎn));
(2)在拋物線的對(duì)稱軸上求一點(diǎn),使的值最小;
(3)若是線段上的一個(gè)動(dòng)點(diǎn)(不與、重合),過軸的平行線,分別交此二次函數(shù)圖像及軸于、兩點(diǎn) . 請(qǐng)問
是否存在這樣的點(diǎn),使.  若存在,
請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)A(-2,y1),B(1,y2),C(2,y3)是拋物線y=-(x+1)2+a上的三點(diǎn),則y1、y2、y3的大小關(guān)系為()
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

校運(yùn)動(dòng)會(huì)鉛球比賽時(shí),小林推出的鉛球行進(jìn)的高度(米)與水平距離(米)滿足關(guān)系式為:,則小林這次鉛球推出的距離是      米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(-1,0),對(duì)稱軸為x=1;現(xiàn)有:①a>0,②c<0,③當(dāng)x>1時(shí),y隨x的增大而減小,④x=3是一元二次方程ax2+bx+c=0的一個(gè)根,則上述結(jié)論中正確的是   ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),矩形ABCD的一邊BC在直角坐標(biāo)系中軸上,折疊邊AD,使點(diǎn)D落在軸上點(diǎn)F處,折痕為AE,已知AB=8,AD=10,并設(shè)點(diǎn)B坐標(biāo)為,其中>0.

(1)求點(diǎn)E、F的坐標(biāo)(用含的式子表示);
(2)連接OA,若△OAF是等腰三角形,求的值;
(3)設(shè)拋物線經(jīng)過圖(1)中的A、E兩點(diǎn),如圖(2),其頂點(diǎn)為M,連結(jié)AM,若∠OAM=90°,求、、的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案