【題目】群芳雅苑花卉基地出售兩種花卉,其中馬蹄蓮每株4.5元,康乃馨每株6元.如果同一客戶所購的馬蹄蓮數(shù)量多于1000株,那么所有的馬蹄蓮每株還可優(yōu)惠0.3元.現(xiàn)某鮮花店向群芳雅苑花卉基地采購馬蹄蓮8001200株、康乃馨若干株本次采購共用了9000元.然后再以馬蹄蓮每株5.5元、康乃馨每株8元的價格賣出.(注:8001200株表示采購株數(shù)大于或等于800株,且小于或等于1200株;利潤=銷售所得金額﹣進貨所需金額)

1)設鮮花店銷售完這兩種鮮花獲得的利潤為y元,采購馬蹄蓮x株,求yx之間的函數(shù)關系式;

2)若該鮮花店購進的馬蹄蓮多于1000株,采購馬蹄蓮多少時才能使獲得的利潤不少于2890元?

【答案】(1)當800≤x≤1000時,y=3000﹣0.5x,當1000<x≤1200時,y=3000﹣0.1x;(2)采購馬蹄蓮多于1000株且不多于1100株時才能使獲得的利潤不少于2890元.

【解析】

1)根據(jù)題意,利用分類討論的方法可以求得yx的函數(shù)關系式;

2)根據(jù)(1)中的函數(shù)關系式,令30000.1x≥2890,即可求得x的取值范圍,本題得以解決.

解:(1)當800≤x≤1000時,

y=(5.54.5x+86× 30000.5x,

1000x≤1200時,

y=(5.54.5+0.3x+ 30000.1x;

2)令30000.1x≥2890,

解得,x≤1100,

答:采購馬蹄蓮多于1000株且不多于1100株時才能使獲得的利潤不少于2890元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸交于點,點,與軸交于點,連接,又已知位于軸右側且垂直于軸的動直線,沿軸正方向從運動到(不含點和點),且分別交拋物線,線段以及軸于點

1)求拋物線的表達式;

2)連接,,當直線運動時,求使得相似的點的坐標;

3)作,垂足為,當直線運動時,求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,長、寬均為3,高為8的長方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長進行旋轉傾斜后,水面恰好觸到容器口邊緣,圖2是此時的示意圖,則圖2中水面高度為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“揚州漆器”名揚天下,某網(wǎng)店專門銷售某種品牌的漆器筆筒,成本為元/件,每天銷售(件)與銷售單價(元)之間存在一次函數(shù)關系,如圖所示.

1)求之間的函數(shù)關系;

2)如果規(guī)定每天漆器筆筒的銷售量不低于件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?

3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于元,試確定該漆器筆筒銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCADE均為等邊三角形,點OAC的中點,點DA射線BO上,連接OE,EC,若AB4,則OE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】家庭過期藥品屬于“國家危險廢物”,處理不當將污染環(huán)境,危害健康.某市藥監(jiān)部門為了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機抽樣調(diào)査.

(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號)

在市中心某個居民區(qū)以家庭為單位隨機抽;在全市醫(yī)務工作者中以家庭為單位隨機抽;在全市常住人口中以家庭為單位隨機抽取.

(2)本次抽樣調(diào)査發(fā)現(xiàn),接受調(diào)査的家庭都有過期藥品,現(xiàn)將有關數(shù)據(jù)呈現(xiàn)如圖:

m= ,n=

補全條形統(tǒng)計圖;

根據(jù)調(diào)査數(shù)據(jù),你認為該市市民家庭處理過期藥品最常見的方式是什么?

家庭過期藥品的正確處理方式是送回收點,若該市有180萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,已知在中,,,延長,使,以為圓心,長為半徑作⊙延長線于點,連接

(1)求證:是⊙的切線;

(2)若AB=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ACB=2∠B,如圖,當C=90°,AD為BAC的角平分線時,在AB上截取AE=AC,連接DE,易證AB=AC+CD.

(1)如圖,當∠C≠90°,AD為BAC的角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關系?不需要證明,請直接寫出你的猜想:

(2)如圖,當AD為ABC的外角平分線時,線段AB、AC、CD又有怎樣的數(shù)量關系?請寫出你的猜想,并對你的猜想給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,,以AB為直徑作半圓O,點P從點A出發(fā),沿AD方向以每秒1個單位的速度向點D運動,點Q從點C出發(fā),沿C8方向以每秒3個單位的速度向點B運動,兩點同時開始運動,當一點到達終點后,另一點也隨之停止運動。設運動時間為.

(1)設點M為半圓上任意一點,則DM的最大值為______,最小值為______.

(2)PQ交半圓于點F和點G(F在點G的上方),當時,求的長度;

(3)在運動過程中,PQ和半圓能否相切?若相切,請求出此時l的值,若不能相切,請說明理由;

(4)N是半圓上一點,且,當運動時,PQ與半圓的交點恰好為點N,直接寫出此時t的值。

查看答案和解析>>

同步練習冊答案