【題目】如圖,在正方形ABCD中,,以AB為直徑作半圓O,點(diǎn)P從點(diǎn)A出發(fā),沿AD方向以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿C8方向以每秒3個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),兩點(diǎn)同時(shí)開始運(yùn)動(dòng),當(dāng)一點(diǎn)到達(dá)終點(diǎn)后,另一點(diǎn)也隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為.
(1)設(shè)點(diǎn)M為半圓上任意一點(diǎn),則DM的最大值為______,最小值為______.
(2)設(shè)PQ交半圓于點(diǎn)F和點(diǎn)G(點(diǎn)F在點(diǎn)G的上方),當(dāng)時(shí),求的長度;
(3)在運(yùn)動(dòng)過程中,PQ和半圓能否相切?若相切,請(qǐng)求出此時(shí)l的值,若不能相切,請(qǐng)說明理由;
(4)點(diǎn)N是半圓上一點(diǎn),且,當(dāng)運(yùn)動(dòng)時(shí),PQ與半圓的交點(diǎn)恰好為點(diǎn)N,直接寫出此時(shí)t的值。
【答案】(1),;(2)4;(3)不能相切;(4)當(dāng)運(yùn)動(dòng)時(shí),與半圓的交點(diǎn)恰好為點(diǎn).
【解析】
(1) 找出DM最大和最小的位置,即可得出結(jié)論;(2)先確定出AP=3,進(jìn)而得出∠OFE=30°,即可得出∠FOG=120°,最后用弧長公式即可得出結(jié)論;(3)假設(shè)PQ與半圓相切,進(jìn)而表示出PQ=12-2t.QH=12-4t,再用勾股定理建立122+(12-4t)2=(12-2t)2,判斷出出此方程無解,即可得出結(jié)論.(4)先判斷出0≤t≤4,再利用S扇形BON=6π,求出∠BON=60°,再判斷出AP始終小于AI,最后得出,建立方程即可得出結(jié)論.
解:(1)如圖,連接OD,此時(shí)DM最小,
在中,,
;
當(dāng)點(diǎn)M和點(diǎn)B重合時(shí),連接BD,
DM最大,
故答案為:,
(2)四邊形ABCD是正方形,
,,
當(dāng)時(shí),四邊形ABQP是矩形,
,
∵,,
,
,解得
,
如圖1,設(shè)PQ交半圓于F,G,過點(diǎn)O作于點(diǎn)E,連接OF、OG,
,
∵,
,
∵,
,
∴的長度
(3)不能相切.
理由:若PQ與半圓O相切,設(shè)切點(diǎn)為點(diǎn)S,如圖2,
由切線長定理,得,,
.
過點(diǎn)P作于點(diǎn)H,
四邊形APHB是矩形,
,
,
∵在中,,
即:.
∵,此方程無解,
在運(yùn)動(dòng)過程中,和半圓不能相切;
(4)∵點(diǎn)是以每秒3個(gè)單位的速度向點(diǎn)運(yùn)動(dòng),.
,
∵點(diǎn)是以每秒1個(gè)單位的速度向點(diǎn)運(yùn)動(dòng),
即.
如圖3,過點(diǎn)作,交于點(diǎn),交于點(diǎn),過點(diǎn)作于點(diǎn),則四邊形和四邊形都是矩形,
∵,
.
∵,
,.
當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),,不符合題意,
始終小于,
,,
∵,,
,.
∵,
.
,解得,
∵,
當(dāng)運(yùn)動(dòng)時(shí),與半圓的交點(diǎn)恰好為點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】群芳雅苑花卉基地出售兩種花卉,其中馬蹄蓮每株4.5元,康乃馨每株6元.如果同一客戶所購的馬蹄蓮數(shù)量多于1000株,那么所有的馬蹄蓮每株還可優(yōu)惠0.3元.現(xiàn)某鮮花店向群芳雅苑花卉基地采購馬蹄蓮800~1200株、康乃馨若干株本次采購共用了9000元.然后再以馬蹄蓮每株5.5元、康乃馨每株8元的價(jià)格賣出.(注:800~1200株表示采購株數(shù)大于或等于800株,且小于或等于1200株;利潤=銷售所得金額﹣進(jìn)貨所需金額)
(1)設(shè)鮮花店銷售完這兩種鮮花獲得的利潤為y元,采購馬蹄蓮x株,求y與x之間的函數(shù)關(guān)系式;
(2)若該鮮花店購進(jìn)的馬蹄蓮多于1000株,采購馬蹄蓮多少時(shí)才能使獲得的利潤不少于2890元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.
(1)本次一共抽取了幾名九年級(jí)學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是幾度?
(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績達(dá)到A級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)、.
(1)求、滿足的關(guān)系式及的值.
(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.
(3)如圖,當(dāng)時(shí),在拋物線上是否存在點(diǎn),使的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣2x+c(c為常數(shù))的對(duì)稱軸如圖所示,且拋物線過點(diǎn)C(0,c).
(1)當(dāng)c=﹣3時(shí),點(diǎn)(x1,y1)在拋物線y=x2﹣2x+c上,求y1的最小值;
(2)若拋物線與x軸有兩個(gè)交點(diǎn),自左向右分別為點(diǎn)A、B,且OA=OB,求拋物線的解析式;
(3)當(dāng)﹣1<x<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于、兩點(diǎn),其中點(diǎn)坐標(biāo)為,與軸交于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖①,連接,點(diǎn)在拋物線上,且滿足.求點(diǎn)的坐標(biāo);
(3)如圖②,點(diǎn)為軸下方拋物線上任意一點(diǎn),點(diǎn)是拋物線對(duì)稱軸與軸的交點(diǎn),直線、分別交拋物線的對(duì)稱軸于點(diǎn)、.請(qǐng)問是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)方法選擇
如圖①,四邊形是的內(nèi)接四邊形,連接,,.求證:.
小穎認(rèn)為可用截長法證明:在上截取,連接…
小軍認(rèn)為可用補(bǔ)短法證明:延長至點(diǎn),使得…
請(qǐng)你選擇一種方法證明.
(2)類比探究
(探究1)
如圖②,四邊形是的內(nèi)接四邊形,連接,,是的直徑,.試用等式表示線段,,之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(探究2)
如圖③,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.
(3)拓展猜想
如圖④,四邊形是的內(nèi)接四邊形,連接,.若是的直徑,,則線段,,之間的等量關(guān)系式是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)共有360名學(xué)生.為了解該校九年級(jí)學(xué)生每周運(yùn)動(dòng)的時(shí)間,從中隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,并將獲得的數(shù)據(jù)(每周運(yùn)動(dòng)的時(shí)間,單位:小時(shí))進(jìn)行整理、描述和分析.下面給出了部分信息.
I.學(xué)生每周運(yùn)動(dòng)的時(shí)間的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:1≤x<3,3≤x<5,5≤x<7,7≤x<9,9≤x<11,11≤x≤13)
Ⅱ.學(xué)生每周運(yùn)動(dòng)的時(shí)間在7≤x<9這一組的數(shù)據(jù)是:
7,7.2,7.4,7.5,7.5,7.6,7.8,7.8,8,8.2,8.4,8.5,8.6,8.8根據(jù)以上信息,解答下列問題:
(1)求這次被抽取的學(xué)生數(shù)。
(2)寫出被抽取學(xué)生每周運(yùn)動(dòng)的時(shí)間的中位數(shù).
(3)根據(jù)此次問卷調(diào)查結(jié)果,估計(jì)該校九年級(jí)全體學(xué)生每周運(yùn)動(dòng)的時(shí)間超過7.9小時(shí)的學(xué)生有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com