【題目】足球運(yùn)球是中考體育必考項(xiàng)目之一蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按AB,CD四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.

1)本次一共抽取了幾名九年級(jí)學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是幾度?

4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?

【答案】140;(2)補(bǔ)圖見(jiàn)解析;(3117;(430

【解析】

1)先根據(jù)B等級(jí)人數(shù)及其百分比求得總?cè)藬?shù);

2)求出C組人數(shù)即可補(bǔ)全圖形;

3)總?cè)藬?shù)減去其他等級(jí)人數(shù)求得C等級(jí)人數(shù),繼而用360°乘以C等級(jí)人數(shù)所占比例即可得;

4)總?cè)藬?shù)乘以樣本中A等級(jí)人數(shù)所占比例可得.

解:(1)總?cè)藬?shù)為18÷45%40人,

故答案為40

2C等級(jí)人數(shù)為40﹣(4+18+5)=13人,

補(bǔ)全條形圖如下:

3)則C對(duì)應(yīng)的扇形的圓心角是360°×117°,

故答案為:117

4)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有300×30人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)、寬均為3,高為8的長(zhǎng)方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長(zhǎng)進(jìn)行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時(shí)的示意圖,則圖2中水面高度為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,已知在中,,,延長(zhǎng),使,以為圓心,長(zhǎng)為半徑作⊙延長(zhǎng)線于點(diǎn),連接

(1)求證:是⊙的切線;

(2)若AB=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠ACB=2∠B,如圖,當(dāng)C=90°,AD為BAC的角平分線時(shí),在AB上截取AE=AC,連接DE,易證AB=AC+CD.

(1)如圖,當(dāng)∠C≠90°,AD為BAC的角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?不需要證明,請(qǐng)直接寫(xiě)出你的猜想:

(2)如圖,當(dāng)AD為ABC的外角平分線時(shí),線段AB、AC、CD又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,并對(duì)你的猜想給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形方格中,陰影部分是涂黑3個(gè)小正方形所形成的圖案.

(1)如果將一粒米隨機(jī)地拋在這個(gè)正方形方格上,那么米粒落在陰影部分的概率是多少?

(2)現(xiàn)將方格內(nèi)空白的小正方形(A,B,C,D,E,F(xiàn))中任取2個(gè)涂黑,得到新圖案.請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求新圖案是軸對(duì)稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線交于點(diǎn),過(guò)點(diǎn)軸的平行線,分別交兩條拋物線于點(diǎn),則以下結(jié)論:①無(wú)論取何值,的值總是正數(shù);;③其中正確結(jié)論是( )

A. ①②B. ①③C. ②③D. 都正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線分別交軸于點(diǎn),交軸于點(diǎn).拋物線的對(duì)稱軸軸相交于點(diǎn),直線與拋物線的對(duì)稱軸相交于點(diǎn).

1)直接寫(xiě)出拋物線的解折式和點(diǎn)的坐標(biāo);

2)如圖1,點(diǎn)為線段上的動(dòng)點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn),且.在點(diǎn),點(diǎn)移動(dòng)的過(guò)程中,是否有最小值?如果有,請(qǐng)求出最小值;

3)以點(diǎn)為旋轉(zhuǎn)中心,將直線繞點(diǎn)逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為 (),直線旋轉(zhuǎn)時(shí),與拋物線的對(duì)稱軸相交于點(diǎn),與拋物線的另一個(gè)交點(diǎn)為點(diǎn).

①如圖2,當(dāng)直線旋轉(zhuǎn)到與直線重合時(shí),判斷線段的數(shù)量關(guān)系?并說(shuō)明理由

②當(dāng)為等腰三角形時(shí),請(qǐng)直按寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,,以AB為直徑作半圓O,點(diǎn)P從點(diǎn)A出發(fā),沿AD方向以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿C8方向以每秒3個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),兩點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng),當(dāng)一點(diǎn)到達(dá)終點(diǎn)后,另一點(diǎn)也隨之停止運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為.

(1)設(shè)點(diǎn)M為半圓上任意一點(diǎn),則DM的最大值為______,最小值為______.

(2)設(shè)PQ交半圓于點(diǎn)F和點(diǎn)G(點(diǎn)F在點(diǎn)G的上方),當(dāng)時(shí),求的長(zhǎng)度;

(3)在運(yùn)動(dòng)過(guò)程中,PQ和半圓能否相切?若相切,請(qǐng)求出此時(shí)l的值,若不能相切,請(qǐng)說(shuō)明理由;

(4)點(diǎn)N是半圓上一點(diǎn),且,當(dāng)運(yùn)動(dòng)時(shí),PQ與半圓的交點(diǎn)恰好為點(diǎn)N,直接寫(xiě)出此時(shí)t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書(shū)《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個(gè)正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

同步練習(xí)冊(cè)答案