【題目】如圖,拋物線與交于點(diǎn),過點(diǎn)作軸的平行線,分別交兩條拋物線于點(diǎn),則以下結(jié)論:①無論取何值,的值總是正數(shù);②;③其中正確結(jié)論是( )
A. ①②B. ①③C. ②③D. 都正確
【答案】B
【解析】
利用二次函數(shù)的性質(zhì)得到y2的最小值為1,則可對①進(jìn)行判斷;把A點(diǎn)坐標(biāo)代入y1=a(x+2)2-3中求出a,則可對②進(jìn)行判斷;利用拋物線的對稱性計(jì)算出AB和AC,則可對③進(jìn)行判斷.
解:∵y2=+1,
∴y2的最小值為1,所以①正確;
把A(1,3)代入y1=a(x+2)2-3得a(1+2)2-3=3,
∴3a=2,所以②錯誤;
拋物線y1=a (x+2)2-3的對稱軸為直線x=-2,拋物線y2=+1
的對稱軸為直線x=3,
∴AB=2×3=6,AC=2×2=4,
∴2AB=3AC,所以③正確.
故答案為①③.故選擇B項(xiàng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于圓,直徑的長為2,過點(diǎn)的切線交的延長線于點(diǎn).張老師要求添加條件后,編制一道題目,并解答.
(1)在添加條件,求的長,請你解答.
(2)以下是小明,小聰?shù)膶υ挘?/span>
小明:我加的條件是,就可以求出的長.
小聰:你這樣太簡單了,我加的條件是,連結(jié),就可以證明與全等.參考此對話,在內(nèi)容中添加條件,編制一道題目(可以添線、添字母),并解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點(diǎn),已成為世界各國普遍關(guān)注和重點(diǎn)發(fā)展的新興產(chǎn)業(yè).如圖是太陽能電池板支撐架的截面圖,其中線段AB、CD、EF表示支撐角鋼,太陽能電池板緊貼在支撐角鋼AB上且長度均為300cm,AB的傾斜角為30°,BE=CA=50cm,支撐角鋼CD、EF與地面接觸點(diǎn)分別為D、F,CD垂直于地面,FE⊥AB于點(diǎn)E.點(diǎn)A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是⊙O上一點(diǎn),點(diǎn)P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=4.
(1)求證:PC是⊙O的切線.
(2)求tan∠CAB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一蘭州市某學(xué)校為了解今年九年級學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級學(xué)生足球運(yùn)球的測試成績作為一個樣本,按A,B,C,D四個等級進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.
(1)本次一共抽取了幾名九年級學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,C對應(yīng)的扇形的圓心角是幾度?
(4)該校九年級有300名學(xué)生,請估計(jì)足球運(yùn)球測試成績達(dá)到A級的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種小商品,每件進(jìn)貨價為190元.調(diào)查發(fā)現(xiàn),當(dāng)銷售價為210元時,平均每天能銷售8件;當(dāng)銷售價每降低2元時,平均每天就能多銷售4件.設(shè)每件小商品降價元,平均每天銷售件.
(1)直接寫出與之間的函數(shù)關(guān)系式(不必寫出的取值范圍);
(2)商場要想使這種小商品平均每天的銷售利潤達(dá)到280元,求每件小商品的銷售價應(yīng)定為多少元?
(3)設(shè)每天的銷售總利潤為元,求與之間的函數(shù)關(guān)系式;每件商品降價多少元時,每天的總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)、.
(1)求、滿足的關(guān)系式及的值.
(2)當(dāng)時,若的函數(shù)值隨的增大而增大,求的取值范圍.
(3)如圖,當(dāng)時,在拋物線上是否存在點(diǎn),使的面積為1?若存在,請求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于、兩點(diǎn),其中點(diǎn)坐標(biāo)為,與軸交于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖①,連接,點(diǎn)在拋物線上,且滿足.求點(diǎn)的坐標(biāo);
(3)如圖②,點(diǎn)為軸下方拋物線上任意一點(diǎn),點(diǎn)是拋物線對稱軸與軸的交點(diǎn),直線、分別交拋物線的對稱軸于點(diǎn)、.請問是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車,從入口處出發(fā),沿該公路開往草甸,途中?克郑ㄉ舷萝嚂r間忽略不計(jì)).第一班車上午8點(diǎn)發(fā)車,以后每隔10分鐘有一班車從入口處發(fā)車.小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達(dá)入口處,因還沒到班車發(fā)車時間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林.離入口處的路程(米)與時間(分)的函數(shù)關(guān)系如圖2所示.
(1)求第一班車離入口處的路程(米)與時間(分)的函數(shù)表達(dá)式.
(2)求第一班車從人口處到達(dá)塔林所蓄的時間.
(3)小聰在塔林游玩40分鐘后,想坐班車到草甸,則小聘聰最早能夠坐上第幾班車?如果他坐這班車到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車速度均相同,小聰步行速度不變)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com