【題目】如圖,中,,,的高.

畫(huà)出的角平分線(xiàn),并求出的度數(shù);

直接寫(xiě)出,三者之間的數(shù)量關(guān)系.

【答案】120°;(2

【解析】

以點(diǎn)A為圓心,以任意長(zhǎng)為半徑畫(huà)弧,交于兩點(diǎn),分別以這兩點(diǎn)為圓心,大于這兩點(diǎn)的距離的一半為半徑畫(huà)弧,在的內(nèi)部交于一點(diǎn),過(guò)這一點(diǎn)及點(diǎn)A作直線(xiàn)交于點(diǎn)D,就是所求的的平分線(xiàn);利用角平分線(xiàn)把一個(gè)角平分的性質(zhì)和高線(xiàn)得到的性質(zhì)可得的度數(shù).

根據(jù)得出三者之間的數(shù)量關(guān)系即可.

解:以點(diǎn)A為圓心,以任意長(zhǎng)為半徑畫(huà)弧,交,于兩點(diǎn),分別以這兩點(diǎn)為圓心,大于這兩點(diǎn)的距離的一半為半徑畫(huà)弧,在的內(nèi)部交于一點(diǎn),過(guò)這一點(diǎn)及點(diǎn)A作直線(xiàn)交于點(diǎn)D就是所求的的平分線(xiàn),

,

平分,

,(角平分線(xiàn)的定義)

;

,理由如下

,

平分,

,(角平分線(xiàn)的定義)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD和正方形BEFG中,點(diǎn)A,B,E在同一條直線(xiàn)上,連接DF,且P是線(xiàn)段DF的中點(diǎn),連接PG,PC.

(1)如圖1中,PGPC的位置關(guān)系是   ,數(shù)量關(guān)系是   

(2)如圖2將條件正方形ABCD和正方形BEFG”改為矩形ABCD和矩形BEFG”其它條件不變,求證:PG=PC;

(3)如圖3,若將條件正方形ABCD和正方形BEFG”改為菱形ABCD和菱形BEFG”,點(diǎn)A,B,E在同一條直線(xiàn)上,連接DF,P是線(xiàn)段DF的中點(diǎn),連接PG、PC,且∠ABC=∠BEF=60°,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的面積為32,對(duì)角線(xiàn)BD繞著它的中點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后,其所在直線(xiàn)分別交BC,AD于點(diǎn)EF,若AF3DF,則圖中陰影部分的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(0,b),且a、b滿(mǎn)足(a﹣2)2+=0.

(1)求直線(xiàn)AB的解析式;

(2)若點(diǎn)M為直線(xiàn)y=mx上一點(diǎn),且ABM是等腰直角三角形,求m值;

(3)過(guò)A點(diǎn)的直線(xiàn)y=kx﹣2k交y軸于負(fù)半軸于P,N點(diǎn)的橫坐標(biāo)為﹣1,過(guò)N點(diǎn)的直線(xiàn)y=x﹣交AP于點(diǎn)M,試證明的值為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,過(guò)點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形

(2)CF=6,BF=8,DF=10,求證:AF是∠DAB的平分線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀材料)

對(duì)于二次三項(xiàng)式可以直接分解為的形式,但對(duì)于二次三項(xiàng)式,就不能直接用公式了,我們可以在二次三項(xiàng)式中先加上一項(xiàng),使其成為完全平方式,再減去這項(xiàng),(這里也可把拆成的和),使整個(gè)式子的值不變.

于是有:

,

我們把像這樣將二次三項(xiàng)式分解因式的方法叫做添()項(xiàng)法.

(應(yīng)用材料)

上式中添()項(xiàng)后先把完全平方式組合在一起,然后用______法實(shí)現(xiàn)分解因式.

請(qǐng)你根據(jù)材料中提供的因式分解的方法,將下面的多項(xiàng)式分解因式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校想知道九年級(jí)學(xué)生對(duì)我國(guó)倡導(dǎo)的一帶一路的了解程度,隨機(jī)抽取部分九年級(jí)學(xué)生進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷設(shè)有4個(gè)選項(xiàng)(每位被調(diào)查的學(xué)生必選且只選一項(xiàng)):A.非常了解.B.了解.C.知道一點(diǎn).D.完全不知道.將調(diào)查的結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

1)求本次共調(diào)查了多少學(xué)生?

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校九年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)了解的學(xué)生約有多少名?

4)在非常了解3人中,有2名女生,1名男生,老師想從這3人中任選兩人做宣傳員,請(qǐng)用列表或畫(huà)樹(shù)狀圖法求出被選中的兩人恰好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°,B=E=30°.

(1)操作發(fā)現(xiàn):如圖2,固定△ABC,使△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn).當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空:

①線(xiàn)段DEAC的位置關(guān)系是 ;

②設(shè)△BDC的面積為S1AEC的面積為S2,則S1S2的數(shù)量關(guān)系是 ;

(2)猜想論證:

當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AECBC,CE邊上的高,請(qǐng)你證明小明的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC,點(diǎn)E,F(xiàn)在邊BC上,BE=CF,點(diǎn)DAF的延長(zhǎng)線(xiàn)上,AD=AC.

(1)求證:ABE≌△ACF;

(2)若∠BAE=30°,則∠ADC=   °.

查看答案和解析>>

同步練習(xí)冊(cè)答案