【題目】已知:如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點(diǎn)P.
(1)求證:△ABE≌△CAD;
(2)若PQ=2,BE=5,求PE的值.
【答案】(1)見解析;(2)PE=1.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)得到AB=AC,∠BAE=∠C=60°,證明△ABE≌△CAD
(2)根據(jù)直角三角形的性質(zhì)得到BP=2PQ,再根據(jù)題意BP=2PQ =4,則PE =1.
(1)∵△ABC是等邊三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS),
(2) ∵△ABE≌△CAD,
∴∠ABE=∠CAQ,
∴∠BPQ=∠BAP+∠ABE=∠BAP+∠CAD=∠BAC=60°,∵BQ⊥AD,
∴∠PBQ=90°∠BPQ=90°60°=30°,
∴BP=2PQ.
∵PQ=2,BE=5,
則BP=2PQ =4,PE = BE- PB=5-4=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是學(xué)習(xí)初中數(shù)學(xué)的- -個重要工具利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)為,則兩點(diǎn)之間的距離,若,則可簡化為;線段的中點(diǎn)表示的數(shù)為如圖,已知數(shù)軸上有兩點(diǎn),分別表示的數(shù)為,點(diǎn)以每秒個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,點(diǎn)以每秒個單位長度向左勻速運(yùn)動,設(shè)運(yùn)動時間為秒.
(1)運(yùn)動開始前,兩點(diǎn)的距離為多少個單位長度;線段的中點(diǎn)所表示的數(shù)為?
(2)點(diǎn)運(yùn)動秒后所在位置的點(diǎn)表示的數(shù)為 ;點(diǎn) 運(yùn)動秒后所在位置的點(diǎn)表示的數(shù)為 . (用含的式子表示)
(3)它們按上述方式運(yùn)動,兩點(diǎn)經(jīng)過多少秒會相距個單位長度?
(4)若按上述方式運(yùn)動, 兩點(diǎn)經(jīng)過多少秒,線段的中點(diǎn)與原點(diǎn)重合?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上點(diǎn)A表示-3,點(diǎn)B表示4.
(1)點(diǎn)A與點(diǎn)B之間的距離是 ;
(2)我們知道,在數(shù)軸上|a|表示數(shù)a所對應(yīng)的點(diǎn)到原點(diǎn)的距離,你能說明在數(shù)軸上表示的意義嗎?
(3)在數(shù)軸上點(diǎn)P表示的數(shù)為x,是否存在這樣的點(diǎn)P,使2PA+PB=12?若存在,請求出相應(yīng)的x;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動
問題情境:
如圖1,在ABC中,AB=AC,∠BAC=90°,D,E分別是邊AB,AC的中點(diǎn),將ADE繞點(diǎn)A順時針旋轉(zhuǎn)α角(0°<α<90°)得到AD′E′,連接CE′,BD′.探究CE′與BD′的數(shù)量關(guān)系;
圖1 圖2 圖3 圖4
探究發(fā)現(xiàn):
(1)圖1中,CE′與BD′的數(shù)量關(guān)系是________;
(2)如圖2,若將問題中的條件“D,E分別是邊AB,AC的中點(diǎn)”改為“D為AB邊上任意一點(diǎn),DE∥BC交AC于點(diǎn)E”,其他條件不變,(1)中CE′與BD′的數(shù)量關(guān)系還成立嗎?請說明理由;
拓展延伸:
(3)如圖3,在(2)的條件下,連接BE′,CD′,分別取BC,CD′,E′D′,BE′的中點(diǎn)F,G,H,I,順次連接F,G,H,I得到四邊形FGHI.請判斷四邊形FGHI的形狀,并說明理由;
(4)如圖4,在ABC中,AB=AC,∠BAC=60°,點(diǎn)D,E分別在AB,AC上,且DE∥BC,將ADE繞點(diǎn)A順時針旋轉(zhuǎn)60°得到AD′E′,連接CE′,BD′.請你仔細(xì)觀察,提出一個你最關(guān)心的數(shù)學(xué)問題(例如:CE′與BD′相等嗎?).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A,B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D,E.求證:△AEC≌△CDB.
(2)如圖2,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,利用(1)中的結(jié)論,請按照圖中所標(biāo)注的數(shù)據(jù)計算圖中實線所圍成的圖形的面積S= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期電影《少年的你》受到廣大青少年的喜愛,某校七年級1班2班的幾名同學(xué)請他們的家長在網(wǎng)上買票,家長了解到某電影院的活動,設(shè)購買電影票的張數(shù)為
購買張數(shù) | |||
每張票的價格 | 元 | 元 | 元 |
家長溝通后決定兩個班的同學(xué)在期中考試結(jié)束后去觀看。兩個班共有人,期中班人數(shù)多于不足人。經(jīng)過估算,如果兩個班都以班為單位購買,則一共應(yīng)付元。
求兩個班有多少個同學(xué)?
如果兩個班聯(lián)合起來,作為一個團(tuán)體購票,可以節(jié)省多少錢?
如果七年級班同學(xué)作為一個團(tuán)體購票,你認(rèn)為如何購票才最省錢?可以節(jié)省多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個變量x,y之間的變化情況如圖所示,根據(jù)圖象回答下列問題:
(1)寫出y的變化范圍;
(2)求當(dāng)x=0,-3時,y的對應(yīng)值;
(3)求當(dāng)y=0,3時,對應(yīng)的x的值;
(4)當(dāng)x為何值時,y的值最大?
(5)當(dāng)x在什么范圍內(nèi)時,y的值在不斷增加?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com