精英家教網 > 初中數學 > 題目詳情

【題目】數軸是學習初中數學的- -個重要工具利用數軸可以將數與形完美地結合.研究數軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數軸上點、點表示的數為,則兩點之間的距離,若,則可簡化為;線段的中點表示的數為如圖,已知數軸上有兩點,分別表示的數為,點以每秒個單位長度的速度沿數軸向右勻速運動,點以每秒個單位長度向左勻速運動,設運動時間為

1)運動開始前,兩點的距離為多少個單位長度;線段的中點所表示的數為?

2)點運動秒后所在位置的點表示的數為 ;點 運動秒后所在位置的點表示的數為 (用含的式子表示)

3)它們按上述方式運動,兩點經過多少秒會相距個單位長度?

4)若按上述方式運動, 兩點經過多少秒,線段的中點與原點重合?

【答案】118-1;(2-10+3t8-2t;(32.8秒或4.4秒會相距4個單位長度;(4)經過2A、B兩點的中點M會與原點重合

【解析】

1)根據數軸的特點及中點的定義即可求解;

2)根據點以每秒個單位長度的速度沿數軸向右勻速運動,點以每秒個單位長度向左勻速運動即可寫出.

3)根據題意分情況討論即可求解;

4)根據題意用含t的式子表示中點M,即可求解.

1)運動開始前,兩點的距離為;線段的中點所表示數為

故答案為:18;

2)∵點以每秒個單位長度的速度沿數軸向右勻速運動,點以每秒個單位長度向左勻速運動

∴點運動秒后所在位置的點表示的數為,點 運動秒后所在位置的點表示的數為,

故答案為:-10+3t8-2t

設它們按上述方式運動,兩點經過秒會相距個單位長度.根據題意得

解得.

:兩點經過秒或秒會相距個單位長度.

由題意得中點M,

∴令

解得.

:經過兩點的中點會與原點重合.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】從甲地到乙地有A,B,C三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時情況,在每條線路上隨機選取了500個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數據,統(tǒng)計如下:

公交車用時

公交車用時的頻數

線路

合計

A

59

151

166

124

500

B

50

50

122

278

500

C

45

265

167

23

500

早高峰期間,乘坐_________(填“A”,“B”“C”)線路上的公交車,從甲地到乙地用時不超過45分鐘的可能性最大.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將若干個同樣大小的小長方形紙片拼成如圖形狀的大長方形小長方形紙片長為a,寬為,請你仔細觀察圖形,解答下列問題:

1ab之間的關系滿足_____________________

2)圖中陰影部分的面積與大長方形面積的比值是___________

3)請你仔細觀察圖中的一個陰影部分,根據它面積的不同表示方法,請你寫出三個代數式之間的等量關系_________________________

應用:根據探索中的等量關系,解決如下問題:的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】元旦是公歷新一年的第一天.“元旦”一詞最早出現(xiàn)于《晉書》:“顓帝以孟夏正月為元,其實正朔元旦之春.”中國古代曾以臘月、十月等的月首為元旦,1949年中華人民共和國以公歷11日為元旦,因此元旦在中國也被稱為“陽歷年”.為慶祝元旦,太原某商場舉行促銷活動,促銷的方法是“消費超過200元時,所購買的商品按原價打8折后,再減少20元”.若某商品的原價為元,則購買該商品實際付款的金額是(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,四邊形 OABC 為菱形,對角線 OB、AC 相交于 D 點,已知 A點的坐標為(10,0),雙曲線 y= x>0 )經過 D 點,交 BC 的延長線于 E 點,且 OBAC=120(OBAC),有下列四個結論:①雙曲線的解析式為y=x>0);②E 點的坐標是(4,6);③sinCOA=;④EC=;⑤AC+OB=8.其中正確的結論有( )

A. 4 個 B. 3 個 C. 2 個 D. 1 個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°ACBC,AD平分∠BACBC于點DDEAB于點E,

(1)求證:AC=AE.

(2)若△BDE的周長是5cmAB的長度為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市居民生活用水的費用由城市供水費污水處理費兩部分組成.為了鼓勵市民節(jié)約用水, 其中城市供水費按階梯式計費:一個月用水 10 噸以內(包括 10 噸)的用戶,每噸收 15 元;一個月用水超過 10 噸的用戶,10 噸水仍按每噸 15 元收費,超過 10 噸的部分,按每噸 2 元收費.另外污水處理費按每噸 065 元收。

1)某居民 5 月份用水 8 噸,應交水費多少元?

2)某居民 6 月份用水 12 噸,應交水費多少元?

3)若某戶某月用水 x 噸,請你用含有 x 的代數式表示該月應交的水費

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用一個平面去截正方體(如圖),下列關于截面(截出的面)形狀的結論:

①可能是銳角三角形;②可能是鈍角三角形;

③可能是長方形;④可能是梯形.

其中正確結論的是______(填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,ABC是等邊三角形,AECD,BQADQBEAD于點P

(1)求證:ABE≌△CAD;

(2)若PQ=2,BE=5,求PE的值.

查看答案和解析>>

同步練習冊答案