【題目】如圖,在中, ,點D, E分別在上,且,將沿DE折疊,點C恰好落在AB邊上的點F處,如果, ,那么CD的長為__________

【答案】

【解析】試題解析:由折疊可得,∠DCE=DFE=90°,

D,CE,F四點共圓,

∴∠CDE=CFE=B,

又∵CE=FE

∴∠CFE=FCE,

∴∠B=FCE

CF=BF,

同理可得,CF=AF

AF=BF,即FAB的中點,

RtABC中,CF=AB=5

D,C,EF四點共圓,可得∠DFC=DEC,

由∠CDE=B,可得∠DEC=A

∴∠DFC=A,

又∵∠DCF=FCA

∴△CDF∽△CFA,

CF2=CD×CA,即52=CD×8,

CD=.

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸于點、點,交軸于點C,且SABC=6.

1)求兩點的坐標;

2)求ABC的外接圓與拋物線的對稱軸的交點坐標;

3)點E為拋物線上的一動點(點異于,且在對稱軸右側(cè)),直線交對稱軸于N,

直線BE交對稱軸于,對稱軸交軸于,試確定 的數(shù)量關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一家商鋪進行維修,若請甲、乙兩名工人同時施工,天可以完成,共需支付兩人工資元,若先請甲工人單獨做天,再請乙工人單獨做天也可完成,共需付給兩人工資

甲、乙工人單獨工作一天,商鋪應分別支付多少工資?

單獨請哪名工人完成,商鋪支付維修費用較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,ABCDACDB

1)求證:ADBC;

2)若EF,GH分別是AB,CDAC,BD的中點,求證:線段EF與線段GH互相平分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分如圖,ABCD中,點E,F(xiàn)在直線AC上點E在F左側(cè),BEDF.

1求證:四邊形BEDF是平行四邊形;

2若ABAC,AB=4,BC=,當四邊形BEDF為矩形時,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD為⊙O的直徑,CDAB,垂足為點FAOBC,垂足為點ECE=2

1)求AB的長;

2)求⊙O的半徑.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923086297137152/1923946164551680/STEM/edc8c851f08548f08f9e61b4dab2d43e.png]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各式因式分解

(1)a(a-3)+2(3-a)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 1y=kx+b 分別交 x 軸、y 軸于點 B(40)、N,直線2:y=2x-1分別交 x 軸、y 軸于點 M、A,1,2 交點 P 的坐標(m,2),請根據(jù)圖象所提供的信息解答下列問題:

(1) x 時,kx+b≥2x-1;

(2)不等式 k+b0 的解集是

(3)在平面內(nèi)是否存在一點 H,使得以AB,P,H四點組成的四邊形是平行四邊形.若存在,直接寫出點 H 的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC,BD交于點O,已知∠AOD=120°,AC=16,則圖中長度為8的線段有( 。

A. 2 B. 4 C. 5 D. 6

查看答案和解析>>

同步練習冊答案