【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Qy軸上的一個動點.

1)請直接寫出a,k,b的值及關于x的不等式ax2kx2的解集;

2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;

3)是否存在以P,QA,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.

【答案】(1)a=﹣1k=﹣1,b=﹣2,x<﹣1x2;(2)△PAB面積的最大值為,此時點P的坐標為(,);(3P的坐標為(﹣3,﹣9)或(3,﹣9)或(1,﹣1),Q的坐標為:Q0,﹣12)或(0,﹣6)或(0,﹣4).

【解析】

1)利用待定系數(shù)法即可求得a,k,b的值,根據(jù)圖象即可得出不等式的解集;(2)過點Ay軸的平行線,過點Bx軸的平行線,兩者交于點C,連接PC.設點P的橫坐標為m,則點P的縱坐標為﹣m2.過點PPDACD,作PEBCE.則D(﹣1,﹣m2),Em,﹣4),由此可得PDm+1,PE=﹣m2+4.再根據(jù)SAPBSAPC+SBPCSABC,代入數(shù)據(jù)即可得SAPBm的二次函數(shù)關系式,利用二次函數(shù)求最值的方法求得m的值及SAPB 的值最大.再求得點P的坐標即可;(3)(3)根據(jù)平行四邊形的性質(zhì)和坐標特點解答即可.

解:(1)把A(﹣1,﹣1),代入yax2中,可得:a=﹣1,

A(﹣1,﹣1),B2,﹣4)代入ykx+b中,可得:,

解得:,

所以a=﹣1,k=﹣1,b=﹣2,

關于x的不等式ax2kx2的解集是x<﹣1x2,

2)過點Ay軸的平行線,過點Bx軸的平行線,兩者交于點C

A(﹣1,﹣1),B2,﹣4),

C(﹣1,﹣4),ACBC3,

設點P的橫坐標為m,則點P的縱坐標為﹣m2

過點PPDACD,作PEBCE.則D(﹣1,﹣m2),Em,﹣4),

PDm+1,PE=﹣m2+4

SAPBSAPC+SBPCSABC

0,﹣1m2

∴當時,SAPB 的值最大.

∴當時,,SAPB,

即△PAB面積的最大值為,此時點P的坐標為(,

3)存在三組符合條件的點,

當以P,QA,B為頂點的四邊形是平行四邊形時,

APBQ,AQBP,A(﹣1,﹣1),B2,﹣4),

可得坐標如下:

P′的橫坐標為﹣3,代入二次函數(shù)表達式,

解得:P'(﹣3,﹣9),Q'0,﹣12);

P″的橫坐標為3,代入二次函數(shù)表達式,

解得:P″(3,﹣9),Q″(0,﹣6);

P的橫坐標為1,代入二次函數(shù)表達式,

解得:P1,﹣1),Q0,﹣4).

故:P的坐標為(﹣3,﹣9)或(3,﹣9)或(1,﹣1),

Q的坐標為:Q0,﹣12)或(0,﹣6)或(0,﹣4).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對應值如表:

下列說法正確的是( 。

A. 拋物線的開口向下

B. x>-3時,yx的增大而增大

C. 二次函數(shù)的最小值是-2

D. 拋物線的對稱軸是x=-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yx2+bx3經(jīng)過點A10),頂點為點M

1)求拋物線的表達式及頂點M的坐標;

2)求∠OAM的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,函數(shù)yx>0)的圖象經(jīng)過點A,作ACx軸于點C

(1)求k的值;

(2)直線yax+ba≠0)圖象經(jīng)過點Ax軸于點B,且OB=2AC.求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標系xOy,ABC的三個頂點都在格點上,點A的坐標(4,4),請解答下列問題:

(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出點A1、B1、C1的坐標;

(2)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點AA2的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】截長補短法,是初中幾何題中一種添加輔助線的方法,也是把幾何題化難為易的一種策略.截長就是在長邊上截取一條線段與某一短邊相等,補短就是通過延長或旋轉(zhuǎn)等方式使兩條短邊拼合到一起,從而解決問題.

(1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關系.

解題思路:延長DC到點E,使CE=BD,根據(jù)∠BAC+∠BDC=180°,可證∠ABD=∠ACE,易證△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而解決問題.

根據(jù)上述解題思路,三條線段DA、DB、DC之間的等量關系是;(直接寫出結果)

(2)如圖2,Rt△ABC中,∠BAC=90°,AB=AC.點D是邊BC下方一點,∠BDC=90°,探索三條線段DA、DB、DC之間的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線分別交x軸、y軸于點A(2,0)、B(0,4),點P是線段AB上一動點,過點PPCx軸于點C,交拋物線于點D

(1)

①求拋物線的解析式;

②當線段PD的長度最大時,求點P的坐標;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C是⊙O直徑AB上一點,過CCDAB交⊙O于點D,連接DA,延長BA至點P,連接DP,使∠PDAADC

(1)求證:PD是⊙O的切線;

(2)若AC=3,tanPDC,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由8個大小相同的小正方體組合成的簡單幾何體.

(1)該幾何體的主視圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖;(邊框線加粗畫出,并涂上陰影)

(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和主視圖不變,那么請在下列網(wǎng)格圖中畫出添加小正方體后所得幾何體所有可能的左視圖.

查看答案和解析>>

同步練習冊答案