【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2=0,當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?

【答案】解:∵方程x2﹣2(m+1)x+m2=0有兩個(gè)實(shí)數(shù)根,

∴△=[﹣2(m+1)]2﹣4m2=8m+4≥0,

解得:m≥﹣

答:當(dāng)m≥﹣ 時(shí),方程有兩個(gè)實(shí)數(shù)根.


【解析】由方程有兩個(gè)實(shí)數(shù)根,得出b2-4ac≥0,建立不等式求解。
【考點(diǎn)精析】本題主要考查了求根公式和一元一次不等式的解法的相關(guān)知識(shí)點(diǎn),需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號(hào)方向改變的問題)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,甲出發(fā)1h后,乙出發(fā).設(shè)甲與A地相距(km),乙與A地相距(km),甲離開A地的時(shí)間為x(h),,與x之間的函數(shù)圖象如圖所示.

(1)甲的速度是 km/h;

(2)當(dāng)1≤x≤5時(shí),求關(guān)于x的函數(shù)解析式;

(3)當(dāng)乙與A地相距240km時(shí),甲與A地相距 km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天;若由甲隊(duì)先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

(2)甲隊(duì)施工一天,需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識(shí)情境)通常情況下,用兩種不同的方法計(jì)算同一個(gè)圖形的面積,可以得到一個(gè)恒等式.

(1)如圖1,在邊長為的正方形中挖掉一個(gè)邊長為的小正方形.把余下的部分剪拼成一個(gè)長方形(如圖2).通過計(jì)算圖形(陰影部分)的面積,驗(yàn)證了一個(gè)等式,則這個(gè)等式是______________;

(拓展探究)類似地,用兩種不同的方法計(jì)算同一個(gè)幾何體的體積,也可以得到一個(gè)恒等式.

如圖3是邊長為的正方體,被如圖所示的分割線分成塊.

圖3

(2)用不同的方法計(jì)算這個(gè)正方體的體積,就可以得到一個(gè)恒等式,這個(gè)恒等式可以為:

_________________________________________________________________;

(3)已知,,利用上面的恒等式求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時(shí),若,用含mn的式子分別表示,得   ,   ;

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)OOD平分∠BOF,OECDO,若∠EOFα,下列說法①∠AOCα90°;②∠EOB180°α;③∠AOF360°,其中正確的是(

A. ①②B. ①③C. ②③D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形ABCD中,AB=3cmAD=4cm,BC=13cmCD=12cm,且∠A=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)把左右兩邊計(jì)算結(jié)果相等的式子用線連接起來:

1

1

1

1

(2)觀察上面計(jì)算結(jié)果相等的各式之間的關(guān)系,可歸納得出:1______

(3)利用上述規(guī)律計(jì)算下式的值:(1-)×(1-)×(1-)×…×(1-)×(1-)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E為AB的中點(diǎn),F(xiàn)為BC上任意一點(diǎn),把△BEF沿直線EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在對(duì)角線AC上,則與∠FEB一定相等的角(不含∠FEB)有個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案