【題目】如圖,平行四邊形OABC的頂點(diǎn)O,B在y軸上,頂點(diǎn)A在反比例函數(shù)y=上,頂點(diǎn)C在反比例函數(shù)y=上,則平行四邊形OABC的面積是____________.
【答案】
【解析】
先過(guò)點(diǎn)A作AE⊥y軸于點(diǎn)E,過(guò)點(diǎn)C作CD⊥y軸于點(diǎn)D,再根據(jù)反比例函數(shù)系數(shù)k的幾何意義,求得△ABE的面積=△COD的面積相等= ,△AOE的面積=△CBD的面積相等= ,最后計(jì)算平行四邊形OABC的面積.
解:過(guò)點(diǎn)A作AE⊥y軸于點(diǎn)E,過(guò)點(diǎn)C作CD⊥y軸于點(diǎn)D,
根據(jù)∠AEB=∠CD0=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),
∴△ABE與△COD的面積相等,
又∵點(diǎn)C在的圖象上,
∴△ABE的面積=△COD的面積相等=,
同理可得:△AOE的面積=△CBD的面積相等=,
∴平行四邊形OABC的面積=2(+)=+=,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
小凱遇到這樣一個(gè)問(wèn)題:如圖①,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AC=4,BD=6,∠AOB=30°,求四邊形ABCD的面積.小凱發(fā)現(xiàn),分別過(guò)點(diǎn)A,C作直線BD的垂線,垂足分別為E,F(xiàn),設(shè)AO為m,通過(guò)計(jì)算△ABD與△BCD的面積和可以使問(wèn)題得到解決(如圖②).請(qǐng)回答:
(1)△ABD的面積為________(用含m的式子表示);
(2)求四邊形ABCD的面積.
參考小凱思考問(wèn)題的方法,解決問(wèn)題:
如圖③,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AC=a,BD=b,∠AOB=α(0°<α<90°),則四邊形ABCD的面積為________(用含a,b,α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)θ為直角三角形的一個(gè)銳角,給出θ角三角函數(shù)的兩條基本性質(zhì):①tanθ=;②cos2θ+sin2θ=1,利用這些性質(zhì)解答本題.已知cosθ+sinθ=,求值:
(1)tanθ+; (2)|cosθ-sinθ|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是矩形,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,6),點(diǎn)P從點(diǎn)O出發(fā),沿OA以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A出發(fā),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),線段PQ的中點(diǎn)坐標(biāo)為 .
(2)當(dāng)△CBQ與△PAQ相似時(shí),求t的值;
(3)連接OB,若以PQ為直徑作⊙M,則在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得⊙M與OB相切,若存在,求出時(shí)間t;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在建筑物AB上,掛著35 m長(zhǎng)的宣傳條幅AE,從另一建筑物CD的頂部D處看條幅頂端A處,仰角為45°,看條幅底端E處,俯角為37°.求兩建筑物間的距離BC.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8, tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)按定價(jià)銷(xiāo)售某種電器時(shí),每臺(tái)可獲利 48 元,按定價(jià)的九折銷(xiāo)售該電器 6 臺(tái)與將定價(jià)降低 30 元銷(xiāo)售該電器 9 臺(tái)所獲得的利潤(rùn)相等,
(1)該電器每臺(tái)進(jìn)價(jià)、定價(jià)各是多少元?
(2)按(1)的定價(jià)該商場(chǎng)一年可銷(xiāo)售這種電器 1000 臺(tái).經(jīng)市場(chǎng)調(diào)查:每降低一元一年可多賣(mài)該種電器出 10 臺(tái).如果商場(chǎng)想在一年中使該種電器獲利32670 元,那么商場(chǎng)應(yīng)按幾折銷(xiāo)售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)業(yè)主委員會(huì)決定把一塊長(zhǎng)50m,寬30m的矩形空地建成健身廣場(chǎng),設(shè)計(jì)方案如圖所示,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)為全等的矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周的4個(gè)出口寬度相同,其寬度不小于14m,不大于26m,設(shè)綠化區(qū)較長(zhǎng)邊為xm,活動(dòng)區(qū)的面積為ym2
(1)直接寫(xiě)出:①用x的式子表示出口的寬度為 ;
②y與x的函數(shù)關(guān)系式及x的取值范圍 ;
(2)求活動(dòng)區(qū)的面積y的最大面積;
(3)預(yù)計(jì)活動(dòng)區(qū)造價(jià)為50元/m2,綠化區(qū)造價(jià)為40元/m2,如果業(yè)主委員會(huì)投資不得超過(guò)72000元來(lái)參與建造,當(dāng)x為整數(shù)時(shí),共有幾種建造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交兩坐標(biāo)軸于A、B兩點(diǎn),直線y=-2x+2分別交兩坐標(biāo)軸于C、D兩點(diǎn)
(1)求A、B、C、D四點(diǎn)的坐標(biāo)
(2)如圖1,點(diǎn)E為直線CD上一動(dòng)點(diǎn),OF⊥OE交直線AB于點(diǎn)F,求證:OE=OF
(3)如圖2,直線y=kx+k交x軸于點(diǎn)G,分別交直線AB、CD于N、M兩點(diǎn).若GM=GN,求k的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),拋物線y1=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A(x1,0),B(x2,0),與y軸交于點(diǎn)C,且O,C兩點(diǎn)間的距離為3,x1x2<0,|x1|+|x2|=4,點(diǎn)A,C在直線y2=﹣3x+t上.
(1)當(dāng)y1隨著x的增大而增大時(shí),求自變量x的取值范圍;
(2)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求2n2﹣5n的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com