【題目】設θ為直角三角形的一個銳角,給出θ角三角函數(shù)的兩條基本性質:①tanθ=;②cos2θ+sin2θ=1,利用這些性質解答本題.已知cosθ+sinθ=,求值:
(1)tanθ+; (2)|cosθ-sinθ|.
【答案】(1)4;(2).
【解析】
(1)將tanθ=代入tanθ+并且通分發(fā)現(xiàn),求出cosθsinθ,代入計算即可;(2)先將所求的式子平方,展開后得到cos2θ﹣2cosθsinθ+sin2θ,再將第一步求解中的cosθsinθ=,cos2θ+sin2θ=1代入計算,再求出算數(shù)平方根即可.
(1)∵cosθ+sinθ=,
∴(cosθ+sinθ)2=()2,
cos2θ+2cosθsinθ+sin2θ=,
cosθsinθ=,
∴tanθ+
=+
=
=
=4
(2)∵(cosθ﹣sinθ)2=cos2θ﹣2cosθsinθ+sin2θ=1﹣2×=,
∴cosθ﹣sinθ=±,
∴|cosθ﹣sinθ|=.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線的圖象如圖所示,拋物線過點,則下列結論:
①;②;③;④(為一切實數(shù));⑤;正確的個數(shù)有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點O是正方形ABCD對角線BD的中點.
(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.
①∠AEM=∠FEM; ②點F是AB的中點;
(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;
(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結論).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋里有 個除顏色外都相同的球,其中有 個紅球, 個黃球.
(1) 若從中隨意摸出一個球,求摸出紅球的可能性;
(2) 若要使從中隨意摸出一個球是紅球的可能性為 ,求袋子中需再加入幾個紅球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=k1x的圖象與反比例函數(shù)的圖象的一個交點是(1,3).
(1)寫出這兩個函數(shù)的表達式,并確定這兩個函數(shù)圖象的另一個交點的坐標;
(2)畫出草圖,并據此寫出使反比例函數(shù)大于正比例函數(shù)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E為AD的延長線上一點,且DE=DC,點P為邊AD上一動點,且PC⊥PG,PG=PC,點F為EG的中點.當點P從D點運動到A點時,則CF的最小值為___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山西特產專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經過市場調查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:
(1)每千克核桃應降價多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形OABC的頂點O,B在y軸上,頂點A在反比例函數(shù)y=上,頂點C在反比例函數(shù)y=上,則平行四邊形OABC的面積是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是等腰直角三角形,∠ACB=90°,AB=8cm,動點P、Q以2cm/s的速度分別從點A、B同時出發(fā),點P沿A到B向終點B運動,點Q沿B到A向終點A運動,過點P作PD⊥AC于點D,以PD為邊向右側作正方形PDEF,過點Q作QG⊥AB,交折線BC﹣CA于點G與點C不重合,以QG為邊作等腰直角△QGH,且點G為直角頂點,點C、H始終在QG的同側,設正方形PDEF與△QGH重疊部分圖形的面積為S(cm2),點P運動的時間為t(s)(0<t<4).
(1)當點F在邊QH上時,求t的值.
(2)點正方形PDEF與△QGH重疊部分圖形是四邊形時,求S與t之間的函數(shù)關系式;
(3)當FH所在的直線平行或垂直AB時,直接寫出t的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com