【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Bx軸上,∠ABO90°,ABBO,直線y=﹣3x4與反比例函數(shù)y交于點(diǎn)A,交y軸于C點(diǎn).

1)求k的值;

2)點(diǎn)D與點(diǎn)O關(guān)于AB對稱,連接AD、CD,證明△ACD是直角三角形;

3)在(2)的條件下,點(diǎn)E在反比例函數(shù)圖象上,若SOCESOCD,求點(diǎn)E的坐標(biāo).

【答案】1-4;(2)見解析;(3)點(diǎn)E的坐標(biāo)為(﹣4,1).

【解析】

1)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)A的坐標(biāo),利用待定系數(shù)法求出k;
2)先求出點(diǎn)D的坐標(biāo),求出∠ADB=45°,∠ODC=45°,從而得解;
3)設(shè)出點(diǎn)E的坐標(biāo),根據(jù)三角形的面積公式解答.

1)設(shè)點(diǎn)B的坐標(biāo)為(a,0),

∵∠ABO90°,ABBO

點(diǎn)A的坐標(biāo)為(a,﹣a),

點(diǎn)A在直線y=﹣3x4上,

a=﹣3a4,

解得,a=﹣2,

即點(diǎn)A的坐標(biāo)為(﹣2,2),

點(diǎn)A在反比例函數(shù)y上,

∴k=﹣4

2點(diǎn)D與點(diǎn)O關(guān)于AB對稱,

點(diǎn)D的坐標(biāo)為(﹣4,0

∴OD4

∴DBBA2,

∠ADB45°,

直線y=﹣3x4y軸于C點(diǎn),

點(diǎn)C的坐標(biāo)為(0,﹣4),

∴ODOC,

∴∠ODC45°,

∴∠ADC∠ADB+∠ODC90°

△ACD是直角三角形;

3)設(shè)點(diǎn)E的坐標(biāo)為(m,﹣),

∵SOCESOCD

×4×4×4×(﹣m),

解得,m=﹣4,

=1,

點(diǎn)E的坐標(biāo)為(﹣4,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊿中,以為直徑的⊙與邊交于點(diǎn),點(diǎn)為⊙上一點(diǎn),連接并延長交于點(diǎn) ,連接

(1)若 ;求證:是⊙的切線;

(2)若 .求⊙的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】港珠澳大橋,從2009年開工建造,于20181024日正式通車.其全長55公里,連接港珠澳三地,集橋、島、隧于一體,是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點(diǎn)測得A點(diǎn)的仰角為30°,測得B點(diǎn)的俯角為20°,求斜拉索頂端A點(diǎn)到海平面B點(diǎn)的距離(AB的長).(已知1.73tan20°≈0.36,結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列函數(shù)圖象上任取不同兩點(diǎn),一定能使成立的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,矩形ABCD中,AB2cm,AD3cm.點(diǎn)P和點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P3cm/s的速度沿AD方向運(yùn)動到點(diǎn)D為止,點(diǎn)Q2cm/s的速度沿ABCD方向運(yùn)動到點(diǎn)D為止,則△APQ的面積Scm2)與運(yùn)動時(shí)間ts)之間函數(shù)關(guān)系的大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),某中學(xué)在體育課中加強(qiáng)了學(xué)生的長跑訓(xùn)練.在一次男子1000米耐力測試中,小明和小亮同時(shí)起跑,同時(shí)到達(dá)終點(diǎn);所跑的路程S(米)與所用的時(shí)間t(秒)之間的函數(shù)圖象如圖所示:

1)當(dāng)80≤t≤180時(shí),求小明所跑的路程S(米)與所用的時(shí)間t(秒)之間的函數(shù)表達(dá)式;

2)求他們第一次相遇的時(shí)間是起跑后的第幾秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)在坐標(biāo)軸上,AB,C三點(diǎn)的坐標(biāo)分別為 (02),(10),(0,-05),D為線段AB-個(gè)動點(diǎn)(不與點(diǎn)AB重合),過B,D,0三點(diǎn)的圓與直線BC交于點(diǎn)E,當(dāng)△OED面積取得最小值時(shí),ED的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小如同學(xué)設(shè)計(jì)的作已知直角三角形的外接圓的尺規(guī)作圖過程

已知:,

求作:的外接圓.

作法:如圖,

①分別以點(diǎn)為圓心,大于的長為半徑作弧,兩弧相交于,兩點(diǎn);

②作直線,交于點(diǎn);

③以為圓心,為半徑作

即為所求作的圓.

根據(jù)小如同學(xué)設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡).

2)完成下面的證明:

證明:連接,,,,

由作圖,,

__________)(填推理的依據(jù)).

,

__________)(填推理的依據(jù)).

,

,三點(diǎn)在以為圓心,為直徑的圓上.

的外接圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

操作與發(fā)現(xiàn):

如圖,已知AB兩點(diǎn)在直線CD的同一側(cè),線段AEBF均是直線CD的垂線段,且BFAE的右邊,AE2BF,將BF沿直線CD向右平移,在平移過程中,始終保持∠ABP90°不變,BP邊與直線CD相交于點(diǎn)P,點(diǎn)GAE的中點(diǎn),連接BG

探索與證明:求證:

1)四邊形EFBG是矩形;

2ABG∽△PBF

查看答案和解析>>

同步練習(xí)冊答案